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Abstract

Marine seismic acquisition tows submerged streamers to record pressure waves from the sub-
surface. The recording, however, contains both the desired upgoing wavefield and its (im-
mediate) reflection off the sea-surface, causing a downgoing wavefield known as the seismic
ghost. Interference between the up-and downgoing waves causes periodic low signal to noise
ratio (S/N) ‘ghost notches’ in the recorded spectrum. To restore the broadband upgoing sig-
nal, we must remove the ghost (‘deghosting ’). Deghosting using solely pressure measurements
fails to restore the signal in the low S/N notches of the data. Current acquisition techniques
acquire signals with different ghost notches, such that their proper combination recovers the
broadband signal. This thesis uses multisensor acquisition: measurements of the pressure and
particle velocity vector. The ghost notches on the pressure and vertical particle velocity are
offset by half a period, such that their combination may provide good S/N at all frequencies.
Current multisensor deghosting techniques make deterministic assumptions on the data and
ghost model (such as a known streamer depth, or assuming energy propagating only along the
streamer). If the assumptions do not correspond to the data, the deghosting fails to restore
the true broadband signal. We propose two novel data-driven deghosting techniques, which
estimate an adequate deghosting filter based on the data itself. The first method estimates the
3D propagation of energy using measurements of the pressure and crossline particle velocity
along a single streamer. The 3D incidence angle is used to sum the pressure wave with vertical
particle velocity such that only the upgoing wave is recovered. The second method estimates
the filter parameters that explain the recorded ghosted data by minimizing a multisensor
least-squares deghosting cost function. The cost function is analytically shown to outperform
similar single sensor adaptive deghosting techniques in terms of sensitivity to the true ghost
model. The obtained filter parameters may then be used to construct an inverse filter that
restores the upgoing wavefield. We found that both methods produce encouraging results on
real data, outperforming the existing deterministic multisensor deghosting methods.
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Background

Conventions

The analysis of functions in this thesis is done on the L2
I linear space, I being the interval

considered. We define the L2
I inner product between functions f and g as:

〈f, g〉 =

∫

I
fg∗ dx, (1)

where ∗ is the complex conjugate operator (i.e. (a+ bi)∗ = (a− bi), with i2 = −1).

We can increase the interval I to ±∞. The L2 norm is then defined as:

‖g(t)‖2 =
√
〈g(t), g(t)〉 =

√∫ ∞

−∞
gg∗ dt =

√∫ ∞

−∞
|g(t)|2 dt. (2)

The resulting quantity is called ‘energy’ in signal processing.

Define the Fourier Transform, a basis transform of a finite energy function, say from time
to frequency:

ĝ(f) = F
(
g(t)

)
= 〈g(t), e2πift〉 =

∫ ∞

−∞
g(t)e−2πift dt. (3)

The inverse operation is the Inverse Fourier Transform, an inner product with the conju-
gate exponential:

g(t) = F−1
(
ĝ(f)

)
= 〈ĝ(f), e−2πift〉 =

∫ ∞

−∞
ĝ(f)e2πift df. (4)

Parseval’s theorem proves that the signal’s energy can also be found in the frequency
domain:

‖f(t)‖2 =
√
〈g(t), g(t)〉 =

√
〈ĝ(f), ĝ(f)〉 =

√∫ ∞

−∞
|g(t)|2 dt =

√∫ ∞

−∞
|ĝ(f)|2 df. (5)
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xviii Conventions

An important signal is the delta function, δ(t), which has an infinite spike of zero width
when the argument t = 0. It is defined as a distribution with

∫∞
−∞ f(x)δ(a − x) dx = f(a),

so it can be considered as a way to sample another function at instance a. The Fourier
transform of the delta function is:

̂δ(a− t)(f) =

∫ ∞

−∞
δ(a− t)e−2πift dt = e−2πifa. (6)

The frequency spectrum is defined as the modulus of the Fourier transformed function,
here |e−2πifa| = 1. This means that the frequency spectrum of the delta function is 1 for all
frequencies.

Geophysics deals with two signals: the earth its impulse response is probed by an input signal,
and their combined response is sampled at intervals in time and/or space at the surface. In
a Linear Time Invariant system, the full relation between input and recorded output is
elegantly described, and we will assume this system is valid in this thesis. We break down
the two signals below.

1. Probing the earth its impulse response r(t) by an input signal s(t) gives output g(t).
The operation is written as a convolution product in the time domain:

g(t) = (s ∗ r)(t) =

∫ ∞

−∞
s(n)r(t− n) dn. (7)

Notice that an input signal δ(t) would provide an ‘undisturbed’ recording of the earth
its response ((δ ∗ r)(t) = r(t)). This is the desired result of a geophysical experiment.

The convolution theorem tells us that a convolution in the time domain is equal to
multiplication in the frequency domain and vice versa. As a result, we can find the
frequency domain expression of the output signal:

ĝ(f) = ŝ(f)r̂(f). (8)

Recall that the Fourier transform of δ(t) equals to δ̂(f) = 1, thus ĝ = δ̂(f)r̂(f) = r̂(f).
Again we see how the delta function would give an undisturbed recording of the earth
its response. Any physically realizable wavelet, however, has a limited bandwidth: a
limited frequency content. This means that frequencies not present in the signal (where
ŝ(f) = 0) will not be be in the output signal, i.e. not measured. The above is a
‘convoluted’ way to describe that the input signal is imprinted on the output signal.

2. The recording step affects the signal again. We cannot digitally record a continuous
signal, but only sample the signal at discrete intervals of ∆t in time and ∆x in space.
This operation may cause an effect called aliasing: the signal reconstructed from the
samples differs from the original continuous input signal. Consider measuring the red
sinusoid in the left picture below at every second (denoted by the circles). The most
obvious reconstruction of the signal from the samples is the blue sinusoid on the right
picture. Taking the discrete Fourier transform on aliased data will also show information
at these aliased frequencies, not originally present in the continuous function. To prevent
this ‘fake’ data, we must be careful with processing steps beyond the aliased frequencies.
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Conventions xix

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

The frequency up to which no aliasing is present in the time domain is called the Nyquist
frequency, characterized by two samples per frequency:

fnyquist = 0.5fsampling =
1

2∆t
. (9)

A similar effect plays in the space-time domain, where it is not a lower frequency which
can also explain the data, but an opposite dip which can also explain the data. The
function describing the frequency up to which the data is not spatially aliased is:

fmax =
1

2∆x

vp
sin(θ)

, (10)

where ∆x represents the interval between recording stations, vp the acoustic wave ve-
locity, θ the apparent dip. See Figure 1.

(a) Spatially aliased section. (b) Not spatially aliased section.

Figure 1: Illustration of spatial aliasing with hyperbola’s dipping down towards the right. (a)
Beyond a certain angle, one can also see the signal dipping in an opposite direction:
an effect of aliasing. (b) A smaller ∆x sampling captures the correct dip of the signal.
Images from Liu & Fomel (2011).

The sampling of the earth its response function thus inherently alters the desired signal.
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Plane wave decomposition

Consider the one-way hyperbolic linear (i.e. ‘plane’) wave equation (LeVeque, 1992):

∂P

∂~x
+ ~p

∂P

∂t
= 0, (11)

with ~p the slowness of propagation of a wave P in terms of incidence angle θ and azimuth φ
and velocity vp:

~p =



px
py
pz


 =




sin θ cosφ
sin θ sinφ

cos θ


 1

vp
. (12)

The three components are related through p2
x + p2

y + p2
z = 1

v2
p
. The general solution is

P (x, t) = P0(t− ~p~x) = P0(t− xpx − ypy − zpz), (13)

where P0 is the input wavelet. This corresponds to simply translating the source wavelet
through the space-time domain with velocity vp. One potential choice of wavelet is the
‘monochromatic’ (e.g. constant frequency cosine) wave:

P (x, y, z, t) = Real
[
A(f)ei2πf(t−xpx−ypy−zpz)

]
, (14)

where A(f) is a scalar describing the amplitude of the wavelet at specific frequency.

The plane wave is a useful concept, because it tells us exactly from which direction the energy
is received. A standard seismic section does not immediately give us this information, but
simply records the energy along time and space. To interpret and process the data in terms
of their incidence angles, it helps to transform the data into the plane wave domain. The
process of going from the space-time domain towards a domain dependent on the slowness ~p
is called a plane wave decomposition. Two examples are given below.

1. FK transform: Consider a real-valued function in the space-time domain h(x, y, z, t).
We can apply the Fourier transform over time and the horizontal (x and y) directions
to obtain the f -k transform:

h̃(kx, ky, z, f) =

∫∫∫ ∞

−∞
h(x, y, z, t)e−i2π(ft−kxx−kyy) dtdx dy. (15)

The variables kx and ky are called ‘wavenumbers’, and decompose the data into ‘spatial
frequencies’. We can correspondingly transform back to the original space-time domain
with three inverse Fourier transforms. The Fourier transform for real data is conjugate
symmetric: the information for negative frequencies is the conjugate of the information
in the positive frequencies. We can thus take twice the ‘real’ part of the inverse Fourier
transform over time to get the same output (Wapenaar & Berkhout, 1989):

h(x, y, z, t) = 2 Real

[∫ ∞

0

(∫∫ ∞

−∞
h̃(kx, ky, z, f)ei2π(ft−kxx−kyy) dkx dky

)
df

]
. (16)
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Note the similarity between Equations (14) and (16). Apparently, for a fixed z, the
inverse Fourier transform sums a set of monochromatic plane waves with amplitude h̃,
and we can see the wavenumber represents:

kx = pxf, (17)

and
ky = pyf. (18)

For this reason, the f -kx-ky (short: f -k) domain can be considered a plane wave domain,
separating events with different slownesses. This allows us to filter events on the basis
of their incidence and azimuthal angle. The great property of this domain is that
the forward and inverse operation are rapid transformations using the Fast Fourier
Transform, and the operation is fully invertible. The downside, at least in the context
of this thesis, is that we do not get access to px and py but the slowness multiplied by
the frequency.

2. Tau P transform: The τ -p transform is another plane wave decomposition method.
This transform gives immediate access to the actual px and py, and separates them in
time. The method performs a summation of the data along a straight lines of constant px
and py, and maps these values to the τ -px-py domain. The intercept time τ corresponds
to the time in the data from which the varying lines of px and py are drawn. Consider
again a real-valued function h(x, y, z, t). Notice the similarity to Equation (13), in
describing the operation mathematically (Zhou & Greenhalgh, 1994):

h̄(τ, px, py, z) =

∫∫ ∞

−∞
h(x, y, z, τ − xpx − ypy) dx dy, (19)

=

∫∫ ∞

−∞

(∫ ∞

−∞
ĥ(x, y, z, f)e2πif(τ−xpx−ypy) df

)

︸ ︷︷ ︸
forward and inverse Fourier transform over time

dx dy, (20)

=

∫ ∞

−∞

(∫∫ ∞

−∞
ĥ(x, y, z, f)e−2πif(xpx+ypy) dx dy

)
e2πifτ df. (21)

In practice, this means we can achieve a τ -px-py transform by taking the Fourier trans-
form over time of our data, multiply and sum with the slowness exponential, and then
take the inverse Fourier transform. An inverse τ -p transform is realized by summing
along h̄(px, py, z, τ + xpx + ypy), but this does not recover the initial data completely.
Higher frequencies have been relatively attenuated in the τ -p panel and are not recov-
ered in the inverse transform. One way to make the τ -p panel of higher resolution
(preserving the high frequencies) is to perform deconvolution in the forward transform
– essentially a step to make sure that the conjugate operation would give back the input
data. Even then, the τ -p transform is not fully invertible. In my experience, errors on
the order of 1% of the maximum amplitude occur in the inverse transform. This is
fundamentally different from the f -k transform.

Lastly, to recover as much as possible from the signal, we need to record all the slowness
values in the data. To protect against aliasing, this means we must take a slowness step
∆p dependent on the maximum frequency and offset in our data (Turner, 1990):

∆p ≤ 1

fmaxxmax
≤ 2∆t

xmax
. (22)
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The latter expression replaces fmax by the Nyquist frequency.

The τ -p transform has the big advantage of separating events of different slowness values,
while retaining the time axis. The disadvantage is that the inverse operation does not
fully reproduce the input data, and the method is several orders of magnitude slower
than the f -k transform.
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Chapter 1

The ghost problem

1-1 Broadband seismics & the receiver ghost

Reflection seismology images the subsurface by recording the earth its response to pressure
waves. To get a good signal-to-noise ratio (S/N) in this image, one has to record narrow and
clean wavelets. In the frequency domain this translates to getting a powerful, broadband,
minimum phase recording (Yilmaz, 2001). The broad spectrum enables deep structure imag-
ing with the low frequencies, as well as good temporal resolution through the high frequencies.
The seismic acquisition and processing workflow must preserve this broadband signal to allow
accurate geological interpretations. The seismic ghost is a phenomena which hampers this
goal in marine seismics by degrading the high S/N broadband signal (Day et al., 2013).

The interface between sea-water and air is a near-perfect reflector (r0 ≈ −1). Thus, an
upgoing seismic wave reflects off the sea-surface and propagates downward with reversed
polarity. Marine seismic recordings thus contain both the desired upgoing wave and its sea-
surface reflection, called the ‘receiver ghost’. The receiver ghost interferes with the upgoing
wave, causing periodic low S/N notches in the recorded spectrum. The notches reduce the
usable bandwidth and degrade the resolution of the seismic data, causing a blurring effect to
the seismic images (Figure 1-1). A similar phenomenon is the ‘source ghost’, a duplication of
the source wavelet as it reflects off the sea surface after emission. In this thesis we focus on
the receiver side ghost.

The ghost thus degrades the broadband marine seismic signal. We want to remove the ghost
wavefield from the data to restore the original broadband nature of the data. This is key for
high resolution seismic imaging, as well as a requirement for several standard processing steps
such as multiple removal and velocity analysis (Mayhan & Weglein, 2013).
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2 The ghost problem
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Figure 1-1: 2D illustration of the seimic ghost. An upgoing acoustic plane wave (black parallel
rays) reflects off the sea surface to produce a downgoing wavefield: the ghost (red).
The combination of the upgoing and ghost wavefields results in the recorded wavelet
(blue), which is a distorted version of the desired upgoing wavelet: its phase and
frequency content have changed. The ghost may not be a pure plane wave anymore
due to reflection from the wavy sea surface, illustrated by the non-parallel red rays.

1-2 The ghost as filter

We want to recover the information in the low S/N notches of the spectrum, to restore the
broadband signal at all frequencies. We will first study the ghost as a filter on the upgoing
wavefield, and then remove the effect of the filter. Assume the ‘ghost filter’ acts on the
upgoing pressure wave Pup to produce the recorded wavelet Ptotal.

Pup Gp Ptotal

Figure 1-2: Schematical illustration of the ghost filter. The desired upgoing signal Pup is filtered
by the ghost filter Gp, resulting in the ghosted recording Ptotal.

1-2-1 The ghost as frequency filter

Assume a flat sea surface and upgoing plane wave. The time delay between the upgoing wave
and its ghost at the streamer is then:

t∆ =
2h

vp
cos θ, (1-1)

where h is the streamer depth, vp ≈ 1480 m/s the acoustic wave speed in sea water, and θ
the incidence angle of the wave. The time delay is largest at vertical incidence (θ = 0◦).
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1-2 The ghost as filter 3

The recorded wavefield in the time (t) domain is the sum of the up- and downgoing wavefields.
Assuming a flat sea surface, the downgoing signal is a delayed and polarity reversed copy of
the upgoing signal. The total recorded wavefield is thus:

Ptotal(t, t∆) = Pup(t)− |r0|Pup(t− t∆) =

(
δ(t)− |r0|δ(t− t∆)

)
∗ Pup(t), (1-2)

with the latter expression a convolution product between P and the ‘ghost model’. Observe
that this filter is a simple finite impulse response (FIR) filter, with only two non-zero elements.
The frequency (f) domain expression follows from the convolution theorem,

P̂total(f, t∆) =
(

1− |r0|e−2πift∆
)

︸ ︷︷ ︸
Ĝp(f,t∆)

·P̂up(f) = Ĝp(f, t∆)P̂up(f), (1-3)

where ˆ( · ) represents a frequency domain function. Assuming a reflection coefficient r0 = −1,
we note that |Ĝp| = 2| sin(πft∆)|, i.e. its spectrum periodically varies between 0 and 2. The
ghost model Ĝp(f) thus acts as a frequency filter on the upgoing wavefield, periodically
attenuating and boosting certain frequencies (Figure 1-3).
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Figure 1-3: Effect of the pressure ghost on a Ricker wavelet displayed in the time domain (left:
the sum of the primary and the ghost signal) and frequency domain (right: the
multiplication of the primary spectrum (dashed) with the ghost model (blue)). The
recorded spectrum is a distorted version of the desired spectrum.

1-2-2 The ghost as frequency-wavenumber and frequency-slowness filter

Describing the ghost for events with varying incidence angles is tedious in the offset-time (x-
y-t) domain. Furthermore, describing the ghost for overlapping events is not straightforward.
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4 The ghost problem

A natural way to treat the ghost for all events on a seismic section is to apply plane wave
decomposition (PWD). This decomposition groups events of constant incidence angle θ in
the offset-time domain to a new domain. Two standard PWD domains are the frequency-
wavenumber (f -k) and the frequency-slowness (f -p) domains. Assuming measurements in
the inline x (along the streamer) and crossline y (accross the streamer) direction, we rewrite
the ghost delay:

1. Frequency-wavenumber (f-k): Substitute the vertical wavenumber kz = f cos θ
vp
→

t∆ = 2h
vp

cos θ = 2hkz
f . We know kz(kx, ky) =

√
f2

v2
p
− k2

x − k2
y, with kx and ky the inline

and crossline wavenumbers respectively. The ghost in the f -kx-ky ˜( · ) domain:

P̃total(f, kx, ky) =
(

1− |r0|e−2πi2hkz
)

︸ ︷︷ ︸
G̃p(kz)

·P̃up(f, kx, ky) = G̃p(kz)P̃up(f, kx, ky). (1-4)

2. Frequency-slowness (f-p): Rewrite t∆ using the vertical slowness pz = kz
f = cos θ

vp
→

t∆ = 2hpz. Similarly, knowing pz(px, py) =
√

1
v2
p
− p2

x − p2
y, with inline and crossline

slowness px and py, we consider the ghost in the f -px-py ¯( · ) domain:

P̄total(f, px, py) =
(

1− |r0|e−2πi2hfpz
)

︸ ︷︷ ︸
Ḡp(f,pz)

·P̄up(f, px, py) = Ḡp(f, pz)P̄up(f, px, py). (1-5)

The two plane wave ghost models are shown for h = 10 m in Figure 1-4.

1/(2∆ x)

k x  [s/m]-1/(2∆ x)
0

Gp (f,k x ,k y )

1/(2∆y)
0k y  [s/m]

200

0
-1/(2∆y)

f [
H

z]

1/vp

px  [1/m]
0

G p (f,px,py)

-1/vp1/vp

0
py  [1/m]

200

0
-1/vp

f [
H

z]

vp

Gp(f,kx)

Wavenumber kx  [1/m]
-1/(2∆ x) 0 1/(2∆ x)

Fr
eq

ue
nc

y 
[H

z]

0

100

200
Gp(f,px)

Slowness px  [s/m]
-1/vp 0 1/vp

Fr
eq

ue
nc

y 
[H

z]

0

100

200

0

1

2

Figure 1-4: The ghost model in the plane-wave domains f -k and f -p, showing periodic peaks
and notches as a function of incidence angle θ and frequency f . The ghost model
for fixed conditions is radially symmetric, the bottom figure shows only the notches
of the full 3D ghost model. ∆x and ∆y represent the inline and crossline receiver
spacing respectively.
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1-3 Deterministic deghosting 5

1-3 Deterministic deghosting

1-3-1 Inverse filter

To remove the ghost (hereafter refered to as deghosting), we must thus invert the ghost filter
acting on the data (Figure 1-5). The ghost in the time domain is a convolution between an

Pup Gp Ptotal

G−1p

Figure 1-5: Schematical illustration of the inverse ghost filter, which undoes the ghost operation
and returns the upgoing signal Pup from the ghosted wavefield Ptotal.

FIR filter and the upgoing wavefield. Its inverse, the deconvolution filter, is thus an infinite
impulse response (IIR) filter, which may be unstable. In the frequency domain, this translates
to a division of the data by the ghost model. Assuming complete reflection, r0 = −1:

P̂total(f) =
(

1− e−2πift∆
)

︸ ︷︷ ︸
Ĝp

P̂up =⇒ P̂up(f) =

(
1

Ĝp(f)

)
P̂total(f). (1-6)

This inverse filter Ĝ−1
p has a pole (1

0) at the ghost notches. To mitigate this pole, we can:

1. Multiply the conjgate ghost with the numerator and denominator to preserve the phase
effect, and stabilize the amplitude with a small number in the denominator (see Ap-
pendix A-1).

P̂up(f) ≈
(

Ĝ∗p(f)

Ĝp(f)Ĝ∗p(f) + ε

)
P̂total(f), (1-7)

where ε is a small number such as 0.01 (compare, the other term |Gp|2 varies between
0 and 4). The data at the notch frequencies are not recovered, as G∗p in the numerator
has value 0 at the ghost notch. We call this technique regularization.

2. Stabilize the filter by artificially decaying the data (the complex frequency technique:
Phinney (1965), or Appendix A-2). This prevents the pole in the filter:

Pup(t) ≈ F−1

(
F
(
Ptotale

−at)

Ĝp(f − ai
2π )

)
eat,

≈ F−1

(
F
(
Ptotale

−at)

1− e−2πi(f− ai
2π

)t∆

)
eat = F−1

(
F
(
Ptotale

−at)

1− e−at∆e−2πift∆

)
eat.

(1-8)

The latter notation clarifies how the approach, essentially, adds a constant reflection
coefficient of |r0| = e−at∆ < 1 to the data. In other words, the upgoing wave is always
stronger than the ghost due to the decaying function. The pole is thus removed, allowing
the inverse filter. However, if noise is present in frequencies close to the ghost notches,
the noise will be amplified and degrade the S/N.
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6 The ghost problem

Assuming a white noise baseline, the S/N will be worst at the ghost notches. Amplifying
frequencies around the ghost notch thus amplifies more ‘noise’ than ‘signal’. The standard
regularization is thus the best candidate to deghost data with noise, by not amplifying the
low S/N frequencies. See Figure 1-6. We establish that a stable deghosting operation, robust
against noise, does not recover the true broadband signal at and near the notches.
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Figure 1-6: Example of a stable and an unstable deghosting inverse filter. The regularization
technique does not recover the notch frequency, presenting as ringing with a period
of the ghost notch – but the technique retains the original S/N characteristics in
case of noise. Conversely, the complex frequency technique does recover the notch
frequency, but degrades the S/N by amplifying those frequencies of poor S/N.

1-3-2 Drawbacks of deterministic deghosting

Figure 1-5 illustrates that the inverse filter G−1
p must correspond to the forward ghost filter

Gp, to recover the true broadband seismic signal. If the applied inverse filter differs from
the ghost filter, we first of all do not recover the true upgoing wave, and may also generate
artefacts noted as ‘ringing’. The frequency of these periodic artefacts correspond to the notch
frequencies of the incorrect inverse ghost filter, boosting the local signal amplitudes.

If the ghost model (t∆ = 2h
vp

cos θ and |r0|) is assumed to be known upfront, the deghosting is
called deterministic deghosting. This assumption is not always met in realistic survey settings,
as the parameters vary along with the conditions of the sea and subsurface. The streamer
depth h may vary through undercurrents. Moreover, considerable wave action varies the
true streamer depth through time. The acoustic velocity in water vp varies with pressure,
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1-4 Acquiring more ghosts 7

temperature and salinity. Sharp contrasts in water temperature – thermoclines – and salinity
– haloclines – thus vary the ‘effective’ velocity along the survey. The incidence angle θ is
calculated by transforming the data to a PWD domain. In case of an unruly sea surface,
the upgoing incidence angle of the wave differs from the downgoing incidence angle of the
wave, in which case the time delay does not follow the simple model t∆ = 2h

vp
cos θ anymore.

Moreover, a 3D PWD of the data is not always possible. Whereas the inline receiver spacing
along a streamer is usually small (∆x ≈ 3-12 m), the crossline spacing may reach up to 125 m.
Furthermore, the cross-line recording aperture is limited – usually 12 data points, compared
to several hundred recorders along the inline direction. In practice, the PWD thus tends to
be restricted to the inline direction only, as the wavefield is severely aliased in the crossline
direction. A 2D PWD does not provide the true incidence angle, but merely the apparent
inline incidence angle. Crossline propagation of energy is thus not taken into account. Lastly,
the acoustic impedance (ρvp, or, density times acoustic wave speed) contrast between water
and air may vary along with changes in temperature and salinity. With a changing contrast,
the reflection coefficient may vary along time and space.

A deterministic deghosting approach fails if the assumed ghost model does not correspond to
the actual ghost in the data. The incorrect inverse ghost filter may generate artefacts rather
than restore the true signal bandwidth. This may seem like a handicap of the inverse filter,
but is in fact exploited by some adaptive deghosting methods, which estimate an adequate
ghost model by finding the ghost model that minimizes the ringing in the data. Adaptive
methods can account for the varying conditions in a realistic survey setting, thus aid the
recovery of the true upgoing wavefield.

1-4 Acquiring more ghosts

1-4-1 Deghosting by acquisition strategy

Surveys used to be designed to put the ghost notches outside of the desired bandwidth for a
particular target, requiring little to no processing to still image the target. However, this led
to compromises where multiple targets were not all illuminated optimally. New acquisition
methods try not to lessen the ghost, but measure different ghost characteristics. The com-
bination of the different ghosts then provides increased S/N at a wide range of frequencies
(Day et al., 2013). Typical industry examples are shown in Figure 1-7.

1-4-2 The ghost on multisensor measurements

We will focus on the multicomponent, or, multisensor measurements. The particle velocity
Vz is related to the pressure P with the equation of motion,

∇P = −ρ∂
~V

∂t
, (1-9)

with ρ the density in kg/m3 and ~V = [Vx, Vy, Vz]
T the components of the particle velocity

in m/s. The ghost is thus not only present on the pressure measurements, but also on the
particle velocity measurements. Whereas the inline and crossline particle velocities (Vx and Vy
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Figure 1-7: The traditional seismic survey (flat, left) has a single ghost response that degrades
the signal its frequency spectrum. Advanced acquisition methods try to work around
this effect by recording data with a several ghost responses which provide a good
S/N at broader frequency range when combined. Figure from Schuberth (2015).

respectively) have the same ghost response as the pressure wave – that is, reversing polarity
between the upgoing and downgoing wave – the response for the vertical particle velocity
is different. Assuming horizontal homogeneity, we can write the equation of motion in the
f -kx-ky-z domain:

i2πkzP̃ = i2πfρṼz → P̃ =
fρ

kz
Ṽz =

ρ

pz
Ṽz. (1-10)

Observe that the sign on P̃ and Ṽz is equal for the upgoing wave (pz = cos θ
vp

> 0) but

opposite for the downgoing wave (pz = cos θ
vp

< 0). This relation shows that, as the pressure
data reverses its polarity between upgoing and downgoing wave, we observe twice the same
polarity on the vertical particle velocity. The ghost model is thus 1 + |r0|e−2πift∆ (Figure
1-8).

The complementary nature of the ghost on Ptotal and Vz,total opens up new possibilities for
deghosting. We deal with a single upgoing wavefield causing up to four measurements (P
and the three components of ~V ), i.e. Figure 1-9. The system in the f -kx-ky domain can be
described as the following relation:




P̃total

Ṽx,total

Ṽy ,total

Ṽz ,total




=




G̃p

G̃x

G̃y

G̃z



P̃up =




1− |r0|e−iω2hkz

(
kx
ωρ

) (
1− |r0|e−iω2hkz

)
(
ky
ωρ

) (
1− |r0|e−iω2hkz

)
(
kz
ωρ

) (
1 + |r0|e−iω2hkz

)



P̃up. (1-11)

The scaling factors in front of the velocity ghost models originate from the equation of motion
(1-10), thus provide the scaling between particle velocities and pressure.

The complementary nature of the ghost notches on P and Vz allows us to restore the broad-
band nature of the upgoing wavefield: the part of the spectrum with lowest S/N of the pressure
is the highest S/N part of the spectrum of V̂z and vice versa.
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Figure 1-8: The ghost on the vertical particle velocity Vz has twice the same polarity, thus is
additive rather than subtractive as the ghost on P , and therefore has a different
frequency notch.

Gp Ptotal

Vx,totalGx

Pup

Vy,totalGy

Gz Vz,total

Figure 1-9: The multisensor ghost model may be considered as a filter acting on a single upgoing
wavefield which results in four ghosted measurements. The ghost notches for the
pressure and horizontal particle velocities are equal, whereas the vertical particle
velocity has its notches shifted with half a period.
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10 The ghost problem

1-5 Thesis aim

Various methods of multisensor deghosting exist. However, these methods all make deter-
ministic assumptions on the ghost model. If such assumptions are invalid, the deghosting
will not recover the true broadband nature of the seismic data. The aim of this thesis is to
provide data-adaptive multisensor deghosting techniques for single streamer data. The data-
adaptive part means that the exact deghosting filter depends on the data itself. The single
streamer part means we limit ourselves against spatial aliasing – we will use the crossline
particle velocity Vy measurements to estimate any cross-line energy propagation if needed.

Chapter 2 covers the theory for single sensor data-adaptive, and multisensor deterministic,
deghosting methods. In chapter 3 we will propose a novel multisensor, fully data-driven
technique to deghost the data taking into account the full 3D propagation of the wavefield.
This method will overcome standard single-streamer deghosting methods which assume inline
propagation of energy only – suggesting the biggest advantage of the method must be expected
for strong crossline energy propagation. The method will be tested on synthetic and real data.
In chapter 4 we will propose another novel data-driven technique to deghost multisensor data,
by estimating the ghost model from the data itself. This method overcomes limitations of
adaptive single sensor deghosting techniques, which for example have a sensitivity limited to
the signal bandwidth. The proposed multisensor adaptive deghosting method is analyzed and
shown to be accurate, disregardless of the signal bandwidth. The implementation details are
discussed, after which the method is shown to work on synthetic and real data. A conclusion
and discussion will follow in Chapter 5.
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Chapter 2

Literature review

2-1 Single sensor adaptive deghosting

Inverse filtering is sensitive to the ghost model. Figure 2-1 illustrates the inverse filter with
various time delays and reflection coefficients. The deghosting result ‘rings’ when using a
wrong delay time, visible in the form of periodic artefacts. Deghosting the data using wrong
the reflection coefficient also creates artefacts, albeit less severe. This motivates the need for
an algorithm that adaptively estimates the ghost model parameters from the data. Single
sensor adaptive methods generally estimate the ghost model by minimizing the ringing after
deghosting.

2-1-1 Single Sensor Adaptive Deghosting (SSAD)

Current adaptive deghosting methods (Schuberth, 2015; Rickett et al., 2014; Zhang et al.,
2015) assume that the true upgoing wavefield contains little to no ringing. They try a series
of potential deghosting operators, and pick a solution that minimizes a cost function. The
state-of-the-art is the Single Sensor Adaptive Deghosting (SSAD, Rickett et al., 2014), in its
simplest form:

SSAD : min
t∆,P̂up

∥∥∥P̂data − Ĝp(t∆)P̂up

∥∥∥
2

2
+ λ ‖Pup‖1 , (2-1)

with the L2 norm describing the residual energy between the recorded data Pdata and model,
and the L1 norm describing the sparsity of the synthetic upgoing wavefield. Parameter λ
weighs the two objectives. The system finds an upgoing wavefield Pup by finding an optimal
solution to the objective function, rather than with an inverse filter. Regardless, minimizing
the first term in the objective function still generates a P̂up ≈ 1

Ĝp(t∆)
P̂data. Written in this

form, the first term in the objective function becomes not only trivial, but highlights the
connection between the upgoing wavefield and the ghost:

∥∥∥P̂data − Ĝp(t∆)P̂up

∥∥∥
2

2
≈
∥∥∥∥P̂data −Gp(t∆)

1

Gp(t∆)
P̂data

∥∥∥∥
2

2

= 0. (2-2)
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Figure 2-1: Deghosting a 40 Hz central frequency Ricker wavelet using the wrong ghost model
leads to ringing artefacts. The ‘true’ values are a time delay t∆ = 25 ms and a
reflection coefficient |r0| = 0.95, the correct solution is pointed at with an arrow.
While varying the time delay, the true reflection coefficient was used and vice versa.
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This equation shows that any arbitrary ghost model Gp(t∆) has a corresponding upgoing
wavefield that recreates the input data Pdata. Any proper combination of Gp(t∆) and Pup can
thus bring the first term in the SSAD to zero (Figure 2-2). This is why the SSAD penalizes
non-sparse solutions in its second term, because a very ‘ringy’ Pup can still minimize the first
term.
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Figure 2-2: Two different ghost models create two different upgoing (‘deghosted’) wavefields
that both explain the input data. The two upgoing signals differ in amount of
ringing. Figure from Schuberth (2015). The assumption in adaptive deghosting
methods, is that the wavefield with the least ringing is the true wavefield.

2-1-2 Energy Minimization

Schuberth (2015) argues that the intertwined relation between Pup and t∆ means we can
simplify the cost function to merely the second term: find a ghost delay that minimizes
the ringing after deghosting. The faster optimization shows no degradation in performance
compared to the SSAD. The method is called ‘energy minimization’, as a measure of the
energy in the deghosted wavefield. For display purposes, the cost function is the reciprocal
of the energy, such that the minimum energy gives the maximum cost function.

Energy minization :

max
t∆
‖U(t∆)‖−2

2 , with ‖U(t∆)‖−2
2 =

∥∥∥Û(t∆)
∥∥∥
−2

2
=



∫ ∞

−∞

∣∣∣∣∣
(filtered)P̂data

Ĝp(t∆)

∣∣∣∣∣

2

df



−1

,

subject to
1

fmax
≤ t∆ ≤

2h+ ∆h

vp
,

‖U(t∆)‖−2
2

‖Pdata‖−2
2

≥ 3

2
,

‖U(nt∆)‖−2
2

‖Pdata‖−2
2

≤ 1

4
, n ∈ {2, 3, 4, . . . }.

(2-3)
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The pure cost function is shown in Figure 2-3, the effect of the constraints in Figure 2-4. The
constraints are:

1. The detectable time delays. The maximum expected time delay occurs under vertical
incidence with the maximum expected streamer depth. The minimum expected time
delay depends on the signal bandwidth. If the first notch lies outside of the signal
bandwidth (fnotch 1 > fmax, with t∆ = 1

fnotch 1
), the inverse ghost will not significantly

boost any frequency, thus no significant ringing will occur. Therefore, the ‘energy’ in
the signal is small no matter whether the ghost model is correct or not.

Figure 2-3 demonstrates how with fmax = 100 Hz, there is minimum energy below
1

100 = 0.01 s – we would limit the ghost delay search to above 10 ms to protect against
picking these minimum energy solutions.

2. The upgoing signal must have significantly less energy than the original data. If no
peak can be found, the deghosting is simply not carried out.

3. If an integer multiple (n = 2, 3, 4, . . . ) of the tested delay time also has minimal energy,
we disregard this tested delay. Recall that the ghost notches occur with period of
fnotch = 1

t∆
. Then if ttest = t∆

n , the ghost notches are filled with period n (e.g. the 3rd,
6th, . . . , ghost notches) rather than all ghost notches. This action amplifies some of
the correct frequencies, and leaves the other notches untouched. The result thus has no
ringing, and can be of minimum energy too.

Figure 2-3 demonstrates how the first integer fraction (12.5 ms) of the true ghost delay
(25 ms) has minimal ringing, showing up as a peak in the cost function – the constraint
makes sure we disregard these integer fractions as potential ghost delays.

By Parseval’s theorem (equality of the L2 norm in the time and frequency domain), we
can do a line-search of potential t∆ candidates and apply the selected deghosting model
rapidly in the frequency domain. The line-search may thus be performed on a trace-by-trace
basis in the f -x-y, f -k or f -p domain. We established the time delay in different domains:
t∆ = {2h

vp
cos θ}fxy = {2h

f kz}fk = {2hpz}fp. The f -x domain may have events crossing at
multiple cos θ, thus may have several time delays in a window and is not a favourable domain
to do the adaptive deghosting. Similarly, the f -k domain has a time delay that depends on
the frequency, putting multiple time delays on the same k trace. We can see that the f -p
domain is the only domain that ideally presents a single delay per p trace. The adaptive
deghosting is thus favourably done in the f -p domain.

However, coarse crossline sampling prohibits the PWD of the wavefield into the f -px-py
domain, and we can only do an unaliased f -px PWD. This means that events with separate
crossline components (py), thus with separate time delays, are not separated in the f -px
domain. To approximate the separation of events, overlapping tapered time-windows are
used, small enough to capture single events, yet big enough to capture enough frequency
information to estimate the ghost delay. This approach may be faulty for strongly varying
events, such as the first reflection which may have a rapidly varying 3D incidence angle, but
maps predominantly into a single px point.
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Figure 2-3: An illustration of the unconstrained cost function ‖U(t∆)‖−2
2 from the energy min-

imization technique, normalized by the energy in the ghosted data. The maximum
peak in this case lies at 9 ms, whereas the desired solution lies at 25 ms. The
constraints (Figure 2-4) help to pick the correct maximum.
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Figure 2-4: An illustration of the constrained cost function (Equation (2-3)) of the energy mini-
mization technique, normalized by the energy in the data. The minimum time delay
is limited to the inverse of the maximum frequency t∆,min = 1

fmax
and limited by a

maximum expected time delay. Then, the cost function at > 1.5 (beyond the orange
line) is tested against integer multiple energy at value > 1

4 (beyond the yellow line).
The result is a single remaining peak at the true time delay.
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2-2 Multisensor deghosting

For the multisensor techniques, we will make a separation of techniques which are truly
data-independent (which are simply applying a function to the data), and techniques which
are data-dependent (which adapts the applied functions to optimally fit the data). This is
different still from data-driven, which design their complete filters based on the data itself,
such as the methods in the previous section. The two data-driven models that are proposed
in the next two chapters build upon the methods described in this section.

2-2-1 Data-independent – Single streamer

PZSUM

Wapenaar & Berkhout (1989, p. 88) assume a horizontally homogeneous subspace, and tell
us that we can transform between P̃ (f, kx, ky, z) and Ṽz(f, kx, ky, z) in the following way:

∂

∂z

(
P̃

Ṽz

)
=

(
0 −iωρ
k2
z

iωρ 0

)(
P̃

Ṽz

)
(2-4)

We may do eigenvalue decomposition of the transform matrix as such:

(
0 −iωρ
k2
z

iωρ 0

)
=

(
1 1
kz
ωρ − kz

ωρ

)

︸ ︷︷ ︸
L̃

(
−ikz 0

0 ikz

)

︸ ︷︷ ︸
Ã

1

2

(
1 ωρ

kz
1 −ωρ

kz

)

︸ ︷︷ ︸
L̃−1

. (2-5)

We interpret the last operator L̃−1 as the two-way wavefield decomposition, with

1

2

(
1 ωρ

kz
1 −ωρ

kz

)(
P̃

Ṽz

)
=




1
2

(
P̃ + ωρ

kz
Ṽz

)

1
2

(
P̃ − ωρ

kz
Ṽz

)

 =

(
P̃up

P̃down

)
. (2-6)

The upgoing wavefield is fully retrieved when summing the two filtered spectra. This is
generally known as the ‘PZSUM’ (Caprioli et al., 2012), i.e. summing the pressure P and
scaled vertical velocity ρvpVz = Z, which can be done in any linear domain (Figure 2-5).
Normal choices in seismic processing are:

Pup(x, t) =
1

2

(
P +

vpρ

cos θ
Vz

)
, (2-7)

P̄up(τ, p) =
1

2

(
P̄ +

ρ

pz
V̄z

)
, (2-8)

P̃up(f, k) =
1

2

(
P̃ +

ωρ

kz
Ṽz

)
. (2-9)

The excellent property of the PZSUM is that it makes zero assumptions on the ghost model.
Everything that happens (variations in sea surface roughness, water velocity, reflection coef-
ficient, etc.) to the P component happens to the Vz component as well, it thus does not rely
on a ghost model or ghost delay time t∆ at all.
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Figure 2-5: Example of the PZSUM (center) and Mirror-sum (bottom) principle. The PZSUM
is a weighted sum of the pressure and velocity data, such that the upgoing wave is
kept but the downgoing wave is cancelled. The mirror-sum is the sum between the
upgoing PZSUM and time-advanced and inverted version of the downgoing PZSUM.
Note how the PZSUM does not rely on the ghost model (t∆), whereas the mirror-
sum does. Take note of the difference in S/N on the right side of the image. The
PZSUM achieves an average level of noise, while the mirror-sum stacks coherent
signal and reduces noise, at the expense of relying on a ghost model.
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The difficulties of the PZSUM are threefold. First, the scalar in front of Vz. Without the 3D
incidence angle θ one cannot achieve the proper scaling to cancel the ghost. The incidence
angle is usually only known in the inline direction, through an inline PWD. The PZSUM then
only compensates for the inline incidence angle. The scaling is too small in case of crossline
energy propagation, leaving a residual ghost.

Second, the expressions have a pole for θ = 90◦. Although it seems reasonable to simply not
carry out the scaling factor for this angle, such a simple filter leaves artefacts in the final
image. To better deal with the poles, one can again opt for the regularization or complex
frequency techniques mentioned in Chapter 1. Another option is to design optimal filters
through quadratic (i.e. constrained) programming, for example Røsten et al. (2002).

The third and final drawback of the PZSUM is that the vertical particle velocity usually has
a worse S/N than the pressure data at frequencies below about 20 Hz (Caprioli et al., 2012).
Kamil et al. (2014) introduce an approach to enhance the PZSUM result with the use of a
prior estimate of the noise covariance. Another approach could be to apply the PZSUM only
for frequencies above 20 Hz, and use a different deghosting method for the lower frequencies,
as in Caprioli et al. (2012).

Posthumus & Optimal Deghosting (ODG)

Analogous to the train of thought in single component deghosting, we may propose that both
our P and Vz recordings were caused by the same upgoing wavefield, convolved with their
ghost models.

(
P̃data

Ṽzdata

)
=

(
G̃p
G̃z

)
P̃up. (2-10)

with

G̃p = 1− |r0|e−2πi2hkz ,

G̃z =

(
kz
ωρ

)(
1 + |r0|e−2πi2hkz

)
.

(2-11)

The system is solved by premultiplying the system with the conjugate transpose of the ghost
vector (this solution first appears in Posthumus, 1993, it is the least squares solution to the
noise-free ghost problem, also derived in Appendix A-4-1):

G̃∗pP̃data + G̃∗zṼzdata =
(
G̃∗pG̃p + G̃∗zG̃z

)
P̃up, (2-12)

P̃up =
G̃∗pP̃data + G̃∗zṼzdata

|G̃p|2 + |G̃z|2
. (2-13)

Note that these are element-wise multiplications, performed per frequency-wavenumber com-
bination – not matrix-matrix multiplications. Applying the conjugate ghost models corre-
sponds to dephasing the ghost and summing it together with the primary, illustrated in
Figure 2-5 as the ‘mirror-sum’, and derived in Section A-3 (p. 85).
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The method can be extended upon by incorporating a noise model. For example, Optimal
Deghosting (ODG, Özdemir & Özbek, 2010; Caprioli et al., 2012) can deal with the noise by
solving the more involved system:

(
P̃

Ṽz

)
=

(
G̃p
G̃z

)
P̃up +

(
ÑP

ÑZ

)
. (2-14)

The general solution is derived in Appendix A-4-2. In case of uncorrelated (Gaussian) noise,
it can be shown the system is solved in a least squares sense by:

P̃up =

G̃∗pP̃data

σ2
p

+ G̃∗z Ṽzdata

σ2
z

|G̃p|2
σ2
p

+
|G̃z|2
σ2
z

= W1P̃data +W2Ṽz,data. (2-15)

where σ2
p and σ2

z represent the variance of the normally distributed noise on the pressure
and the vertical particle velocity. The second formulation makes clear that the weighting
W1 and W2 puts more emphasis on the pressure and velocity data, depending on the S/N
characteristics and ghost model at that frequency.

Kamil & Caprioli (2014) show that the noise model may be replaced by the covariance of
the measurement data, as also derived in Appendix A-4-3. In case of uncorrelated noise, the
system to solve now becomes the ‘robust ODG’ (RODG):

Pup =

Ĝ∗pP̂data

|P̂data|2
+

Ĝ∗z V̂z,data

|V̂z,data|2
|Ĝp|2
|P̂data|2

+ |Ĝz |2
|V̂z,data|2

. (2-16)

Notice that all these formulations (Posthumus, ODG, RODG) depend on getting the ghost
time delay right. Using the wrong time delay will result in an incorrect upgoing wave, and
may produce ‘ringing’ – similar to that found in single sensor deghosting. This fundamentally
differs from the PZSUM, which merely depends on getting the angle of incidence right. At
the cost of depending explicitly on the ghost model, the ODG method gains control over the
S/N characteristics of the signal.

2-2-2 Data-dependent – Multistreamer

Data-dependent here refers to the fact that part of the ghost model – the 3D incidence angle –
is obtained by finding the optimal ghost incidence angle from the data. It is still considered a
model based approach because partial knowledge of the ghost model is assumed: the receiver
depth, reflection coefficient and acoustic wave speed.

Generalized Matching Pursuit (GMP)

We established before that the large crossline streamer separation prohibits a three dimen-
sional plane wave decomposition as the data would be severely aliased in the crossline direc-
tion. However, recent ‘greedy’ algorithms have been able to overcome this problem using the
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multisensor redundancy of information. The greedy algorithm used is the matching pursuit
method, which solves a linear system based on picking the best fitting signal in a set of candi-
date signals. “A matching pursuit isolates the signal structures that are coherent with respect
to a given dictionary” (Mallat & Zhang, 1993). Multichannel Interpolation with Matching
Pursuit (MIMAP) exploits the fact that the crossline particle acceleration is the gradient of
the pressure wavefield in the crossline direction (Vassallo et al., 2010). The data data-adaptive
technique uses the two coupled measurements (Pdata and Vy,data) to overcome crossline alias-
ing at the Nyquist frequency. The method then allows an interpolation or reconstruction of
the wavefield between the streamers, by evaluating the achieved PWD of the data.

In the marine seismic case, we already established that the measurements of P , Vz and Vy
can all be considered to come from the same upgoing wavefield (Figure 1-9). We can apply
MIMAP to this data to achieve interpolation of the data between the streamers, but we may
go one step further. Choosing a receiver depth h, reflection coefficient |r0|, acoustic wave
speed vp, we may jointly achieve the interpolation and deghosting which takes into account
the full 3D propagation of the wavefield. The system of equations is solved for a chosen
dictionary length n of crossline wavenumbers ky at streamer locations ~y:



P̃data

Ṽy,data

Ṽz,data


 =



Gp,1e

iky,1~y . . . Gp,ne
iky,n~y

Gy,1e
iky,1~y . . . Gy,ne

iky,n~y

Gp,1e
ikz,1~y . . . Gp,ne

ikz,n~y






A1
...
An


 . (2-17)

Note that each entry in the data vector on the left hand side, as well as the matrix with ghost
models, represents a vector with the data for each streamer position ~y (Özbek et al., 2010).
Generalized Matching Pursuit (GMP) then achieves joint interpolation and deghosting by
finding the optimal entries Aj (a magnitude and phase for the corresponding wavenumbers
ky,j) which minimize the error between the data and model. In an iterative fashion, the vector
of A is expanded, until the ghosted data set is sufficiently described. The PWD in the total
vector ~A then fully describes the upgoing wavefield.

Conceptively, the GMP models many monochromatic plane waves of varying crossline
wavenumbers, computes what their ghosted measurements would look like along all the
streamers, and compare these trial solutions to the actually measured data. If a good match
is found between a potential crossline wavenumber and the multisensor measurements along
all the streamers, the event may be subtracted from the data, and the matching pursuit tries
to find the best event to explain the residual data. This method continues iteratively.

GMP is an effective deghosting technique, as it senses the ghost coming from the crossline
direction, unlike PZSUM and ODG. This method overcomes the assumption of inline prop-
agation as found in for example the PZSUM and ODG. However, it depends on an explicit
choice of the streamer depth, reflection coefficient and acoustic velocity. The GMP method
is also computationally expensive. The question is if simpler methods exist to also account
for the 3D propagation of energy.
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Chapter 3

Data-driven multisensor PZSUM:
PYZSUM

3-1 Motivation

3-1-1 Pitfalls of PZSUM

The PZSUM, as carried out on a single streamer, does not account for crossline energy
propagation. The method is thus a 2D method. Summing the pressure and scaled vertical
particle velocity should achieve:

Pup =
1

2

(
P +

ρvp
cos θ

Vz

)
, (3-1)

but by using only the inline apparent incidence angle, one actually achieves:

Pup =
1

2

(
P +

ρvp√
1− sin2 θ cos2 φ

Vz

)
. (3-2)

This error is shown in Figure 3-1. For φ = 0◦, the scaling is correct, but for increasing
φ the scaling is too small. Without further data, this problem can only be overcome by
making additional assumptions on the wavefield or the ghost. For example, Equation (A-4)
in Appendix A-1 shows how to approximate

ρvp
cos θVz from the ghosted pressure data and an

estimated ghost model. Estimating the scalar is then possible by for example minimizing the
norm between the acquired and estimated Vz data 1.

3-1-2 3D angle PZSUM

Figure 3-2 illustrates the error resulting from applying a ‘2D’ (i.e., inline compensation only)
PZSUM when there is a significant crossline component.

1scalar = fminbnd(@(scale) norm(scale*Vz data-Vz target, 2), 1, 10) minimizes the `2 norm in
MATLAB.

August 12, 2016



24 Data-driven multisensor PZSUM: PYZSUM

θ

x y

z
P

Z

X

α = θ

|P |
1

cosα |Z| = 1
cos θ |Z|

(a) PZSUM scales correctly.

x y

z

φ

θ

α < θ

Z

X

Y

P

|P |
1

cosα |Z| = 1√
1−sin2(θ) cos2(φ)

|Z|

(b) PZSUM scales too little.

Figure 3-1: Graphical explanation of the scaling applied by the 2D PZSUM, which corrects for
the inline incidence angle α rather than the 3D incidence angle θ. The hemispheres
are centered upon a recording station, the purple lines showing the amplitudes of the
pressure P and particle velocities multiplied with ρvp: X, Y and Z. This example
shows two events incoming at θ = 35◦, but with a varying crossline component. To
achieve a good summation of both components, we have to scale the Z component
by 1

cos θ . (a) The PZSUM correctly scales the amplitude of the Z component which
propagates fully along the inline. (b) The PZSUM does not take into account
crossline propagation, thus scales too little. Summing the P and Z component in
this second case would not fully remove the ghost. Note that P is not a vectorial
property as one may take away from this image.

August 12, 2016



3-1 Motivation 25

-1

-0.5

0

0.5

1
θ=0° / ghost delay=24ms

P

Z

-1

-0.5

0

0.5

1
PZSUM (0.5*(P+Z)), 0°

-40

-20

0

P
o
w

e
r 

(d
B

)

Power spectral density (dB)

P
data

P
up

PZSUM

-1

-0.5

0

0.5

1
θ=30° / φ=90° / ghost delay=21ms

P

Z

-1

-0.5

0

0.5

1
PZSUM (0.5*(P+Z)), 30°

-40

-20

0

P
o
w

e
r 

(d
B

)

Power spectral density (dB)

-1

-0.5

0

0.5

1
θ=60° / φ=90° / ghost delay=12ms

P

Z

-1

-0.5

0

0.5

1
PZSUM (0.5*(P+Z)), 60°

-40

-20

0
P

o
w

e
r 

(d
B

)

Power spectral density (dB)

0 0.05 0.1 0.15

t [s]

-1

-0.5

0

0.5

1
θ=80° / φ=90° / ghost delay=4ms

P

Z

0 0.05 0.1 0.15

t [s]

-1

-0.5

0

0.5

1
PZSUM (0.5*(P+Z)), 80°

0 50 100 150

Frequency (Hz)

-40

-20

0

P
o
w

e
r 

(d
B

)

Power spectral density (dB)

Figure 3-2: Example of the PZSUM failing to correctly deghost a ghosted Ricker wavelet in
case of crossline energy propagation. Consider a fixed px = sin(θ) cos(φ)/vp = 0
but varying py = sin(θ) sin(φ)/vp. The time delay of the ghost is given by t∆ =

2hpz = 2h
√

1
v2p
− p2

y. Whereas the pressure data remains of fixed magnitude, the

vertical velocity data must scaled up as Z = ρvpVz, and further scaled by an incidene
angle dependent 1

cos(θ) . The 2D PZSUM is unable to take this crossline propagation

into account, thus does not properly scale Z before the summation. The top three
figures show vertical incidence, which gives the correct target result and spectrum.
The three lines below demonstrate the PZSUM at increasing angles of incidence,
decreasing in performance and a showing a disturbed spectrum (the target spectrum
being the orange line).
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3-2 PYZSUM

The PZSUM thus only compensates for the inline incidence angle of the data. We can,
however, acquire an estimation of the crossline slowness, using the crossline particle velocity
Vy, pressure P , and a technique called the Time Gradient Ratio (TGR), as explained in the
next section. The combined knowledge of the inline slowness (px) and the crossline slowness

(py) allows an estimation of the true 3D incidence angle, vppz =
√

1− p2
xv

2
p − p2

yv
2
p = cos θ.

This opens up the opportunity to do a PZSUM that incorporates crossline energy.

Why not use the TGR method on Vz directly? The PZSUM requires the incidence angle of
the upgoing wave – but TGR gives the slowness of the up- and the downgoing wave at the
streamer. Upon reflection with the sea surface, the wave propagates in the same x and y
direction, but will turn from an up- to a downgoing wave, i.e. the pz component reverses.
Therefore, px and py are the same for both the incident wave and its ghost, whereas pz differs
between the primary and ghost. If these two values interfere, we do not find the correct pz (as

per Equation (3-7)). We thus compute the upgoing vertical slowness as pz =
√

1
v2
p
− p2

x − p2
y.

3-2-1 Time Gradient Ratio

Consider the one-way linear (i.e. ‘plane’) wave equation for a single event (LeVeque, 1992):

∇P + ~p
∂P

∂t
= 0. (3-3)

Similarly, consider the source-free linearized equation of motion (Wapenaar & Berkhout,
1989):

∇P = −ρ∂
~V

∂t
. (3-4)

Under the assumption of a single plane wave in our data, we may eliminate ∇P from the two
equations above, to find the slowness vector:

−~p∂P
∂t

= −ρ∂
~V

∂t
,

→ ~p = ρ
~̇V

Ṗ
.

(3-5)

This relation is called the Time Gradient Ratio (TGR, Ravasi et al., 2011; Rentsch-Smith
et al., 2013). The equation is valid on a trace-by-trace basis, thus is not inherently limited by
any type of aliasing. The Vy measurement thus allows an estimation of the crossline slowness
py:

py = ρ
V̇y

Ṗ
if Ṗ 6= 0. (3-6)

The dots over the variables represent differentiation with respect to time, the ‘if’ statement
prevents division by 0.
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The single event requirement

If two overlapping events of different py are input to the TGR, we would evaluate:

py,TGR = ρ
V̇y,1 + V̇y,2

Ṗ1 + Ṗ2

, (3-7)

which as we can see does not evaluate to a representation of either py.

The TGR requirement for single events in the data is strong, and is not met in a typical
shot gather – even the reflection and refraction signal of a horizontally layered subsurface
interfere in a shot gather. A more complicated subsurface will furthermore lead to reflections
and diffractions coming in from different angles, leading to further overlap in the data. To
avoid the crossing of events, Fortini & Vassallo (2012) suggest the use of f -k filtering to
cluster the data into many sections of near-parallel propagation, before the application of the
TGR. This ‘fan-filtering’ is not an optimal solution against overlap, beause even near-parallel
propagating events can cross. The TGR derived from these sections may therefore still be
tainted with overlapping events.

One option to overcome this problem would be to use more fan-filters, to achieve an even
better approximation of only near-parallel propagating events. We propose a novel different
approach: to apply TGR in the τ -px domain instead. The τ -px transform retains a time
domain axis, and yet achieves a separation of events with different apparent velocities. We
may thus transform a shot gather into the τ -px domain using least squares based or sparse
inversion based techniques (Turner, 1990; Zhou & Greenhalgh, 1994; Wang et al., 2014) and
apply the TGR within this domain. A consequence is that we cannot map the obtained py
values back into the x-t domain. We must thus also process the data in the τ -px domain.

Median filtering to improve S/N

The extrema in the pressure and particle velocity have a time derivative of 0 – where we thus
cannot evaluate the TGR to find py. Additionally, noise in the data poses a problem for the
TGR as per Equation (3-7): if the time derivative of the noise is much larger than that of
the signal, the py estimate of the TGR will not be representative of the signal. In practice,
this noise tends to show up as ‘salt and pepper noise’ (i.e. scattered outliers at minima and
maxima).

Ravasi et al. (2011) suggests the use of bandpass filtering to limit the noise in the data, and
to apply a 1D median filter along the time axis to fill the unevaluated points. The application
of a bandpass filter on P and Vy may select the high S/N frequencies of the data, thus may
limit the influence of noise in further steps. The median filter along the time axis is able to
‘fill in’ the unevaluated py values at the minima and maxima.

As we know that the S/N of the particle velocity is worst at low frequencies, we could follow
Ravasi et al. (2011) and use a low-cut filter on P and Vy as input to the TGR. However,
the low-cut broadens the wavelet in the form of additional side-lobes. The side-lobes may
interfere with events at nearby τ , violating the single event requirement. We thus decided
not to use a frequency filter strategy, in order to keep events maximally separated. In stead,
we propose the use of a 2D median filter rather than a 1D median filter. Whereas the 1D
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median filter replaces every center entry by the median of the values around in along one
dimension, the 2D median filter replaces each entry with the median of those surrounding it
along two dimensions. In the τ -px case, a 2D median filter replaces its center with the median
of a window in the τ and px direction. The median filter is a known technique to remove ‘salt
and pepper’ noise from images (Ahmed et al., 2015). We furthermore propose the use of a
cascaded 2D median filter, known to further imrove the S/N ratio (Ahmed et al., 2015).

3-2-2 Implementation

The practical implementation of the method is straightforward. It comprises of the following
steps:

1. Transform P , Vz and Vy to the τ-px domain. The TGR requires the data, separated
into single events, along a time azis. A domain satisfying these requirements is the τ -px
domain. This requirement is generally met within the τ -px domain. An exception is
for multiple events which have equal inline slowness and intercept time, but differ in
crossline slowness – as these would not be separated in the τ -px domain.

The range of px considered in the transform influences the quality of the τ -px transform.
Extending the slowness range beyond the ‘signal cone’ (± 1

vp
) increases the resolution

of the transform and its inverse. This means that the signal is better preserved, and
incoherent noise is mostly mapped to slowness beyond the signal cone. Extending the
slowness range beyond 1

1200 s/m, however, degrades the performance again, causing
spatial aliasing issues. After several tests, the optimal slowness range on all data sets
is found to be − 1

1200(s/m) to + 1
1200 s/m.

The 2D implementation of the inline PZSUM in the τ -px domain takes the form:

P̄up(τ, px) =
1

2


P̄ +

ρvp√
1− v2

pp
2
x

V̄z


 =

1

2

(
P̄ +W ◦ ρvpV̄z

)
, (3-8)

Where ◦ is the Hadamard (i.e. element-by-element) matrix product. The scalar W is
an (nτ×npx) matrix (i.e. the number of intercept times τ times the number of slowness
values). We apply this scalar only within the signal cone:

W (τ, px) =





1√
1−v2

pp
2
x

+ε

1

1−v2
pp

2
x

+ε
if |px| < 1

vp

1 else

. (3-9)

This scalar is regularized to prevent amplifying the V̄z too much – as its worse S/N will
overshadow the signal otherwise. The regularization smoothens the scalar to prevent
artefacts, similar to the discussion at the PZSUM. An ε = 0.01 limits the amplification
of V̄z to a maximum of 5 (corresponding to an incidence angle arccos(1

5) = 80◦), shown
in Figure 3-3. The complete matrix W , i.e. the complete scalar for the τ -px domain, is
shown in Figure 3-4.
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1√
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Figure 3-3: The regularized scalar for the PZSUM in the τ -px domain approximates the true
scalar, but avoids too much boosting at high angles of incidence. It also preserves
signal outside the signal cone.
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(red, blue, right) of the scalar. The 2D PZSUM has no time dependency, hence the
scalar is constant through time.
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2. Compute the TGR.

The TGR involves two time derivatives. This differentiation can be performed in the
time domain (finite differences) or frequency domain (multiplication with 2πi). Figure
3-5 shows that the frequency domain differentiation is more stable against noise than
finite differences, and thus is the the prefered choice.

The evaluated TGR step is:

py(τ, px) = ρ
˙̄Vz
˙̄P

= ρ
F−1

(
2πifF

(
V̄y(τ, px)

))

F−1
(
2πifF

(
P̄ (τ, px)

)) if | ˙̄P | > ε. (3-10)

The ‘if’ statement prevents division by zero, i.e. ε = 0. The treshold may also prevent

against noise, ε can generally be set to a fraction of the maximum amplitudes in ˙̄P .
We found that setting ε to 1% of the maximum provided excellent results blocking out
noise. (Figure 3-5 uses this 1% treshold on both methods.)

The obtained py may still be unphysical due to noise (i.e. |py| >
√

1
v2
p
− p2

x). These

values are clipped.

The estimated py still requires an additional step of filtering. The minima and maxima
of the wavelet have 0 as their time derivative, causing an estimation of py as 0. To
remove such erroneous estimations, coherent events in the the data are brought out by
smoothing with a median filter. This smoothing also removes ‘salt and pepper noise’,
i.e. positive and negative outliers, thus actually increases the S/N. In theory, only a 1D
median filter over time is required to remove the non-essential zeroes. In practice, it is
found that a 2D median filter is better able to bring out coherent effects in real data
with noise. The choice for the window size can be critical – too large, and it removes
all signal, too small and it doesn’t improve the S/N of the signal. Testing shows that
a 5×5 window (that is: two samples in all directions around the sample) achieves this
compromise. Following Ahmed et al. (2015), processing the image again with the same
median filter (a ‘cascaded median filter’) further improves the S/N, shown in Figure
3-6. Consider the first pass of the median filter as a way to remove ‘salt and pepper’
noise, and the second pass of the median filter a way to smoothen the data before use
in the scalar.
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(a) Cut out of the P and Vy components of the real data set 1 in the τ -px domain.
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(b) The two different py estimations using finite differences or differentiation in the frequency domain.

Figure 3-5: The TGR methods show different sensitivities to noise. The 5-point finite difference
stencil formulation produces a noisy TGR result. The frequency differentiation is
less noisy, and visually corresponds to the events found in the input τ -px data.
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scalar with [7×1] median filter
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Figure 3-6: Two different median filters are applied to the TGR result. The crossline energy is
all directed in just the positive py direction (i.e. all should be between green and
yellow), but noise has caused patches of negative py (blue). The left one is a 1D
median filter along the time direction, the right one a 2D median filter. Note that
the right signal has a lower resolution, but also contains less outliers.

August 12, 2016



3-2 PYZSUM 33

3. Compute the full P(Y)ZSUM scalar.

We now have the ingredients to build the final scalar W for the PZSUM W = 1
vppz

=
1√

1−p2
x−p2

y

. We then use the value of this scalar where it differs from the 2D scalar,

Equation (3-9). This way, we retain the smooth filter qualities of the data towards
the high px edges if the event has no crossline energy, and compensate fully in case of
crossline energy. The scalar computed after application of two different median filters
is shown in Figure 3-7. The cascaded median filter is smoother, which leads to cleaner
PZSUM result.
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Figure 3-7: The total ‘3D’ scalar for the PYZSUM.

4. The P(Y)ZSUM can now be carried out in the τ-px domain, and brought
back to the time domain.

We can evaluate:

P̄up(τ, px) =
1

2

(
P̄ +WρvpV̄z

)
. (3-11)

And correspondingly, we can return the data to the x-t domain with an inverse τ -px
transform.

3-2-3 Illustration on synthetic data

The steps specified in the previous section have been implemented in MATLAB. To il-
lustrate the performance of the technique, we will apply it to a synthetic data set (Fig-
ure 3-8). The synthetic data was created using the 3D Green’s function solutions to

the inhomogeneous Helmholtz equation (∇2 +
(

2πf
vp

)2
)G = −δ(t): G3D = δ(t−r)

4πr , where

r =
√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 represents the Euclidian distance between source
and receiver. The Green’s functions for the velocity components are found by taking the
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derivatives to the respective x, y and z dimension. The solution to the wave equation to a
different input is then found through the convolution between G3D and the input signal S,
which is efficiently done in the frequency domain. The Fourier transform Ĝ3D(f) = e2πifr

4πr is
easily found. For the signal S we use a 40 Hz central frequency Ricker wavelet. The data
is simulated by creating synthetic data with zr = 50 m as the receiver depth. The ghosted
synthetic data is then produced by virtually positioning the receiver above the sea surface
(zr = −50 m), and inverting the polarity for this ghost for the P , Vx and Vy components.
The data is produced for inline receivers xr from -3000 m to 3000 m, at yr = 0 and a receiver
spacing of ∆x = 5 m. The data is sampled at ∆t = 2 ms, for a total of 3 seconds.

The method thus allows us to simulate a point-source buried underground at coordinates
(xs, ys, zs). The chosen locations are specified in Table 3-1. The synthetic data contains
four experimental cases:

1. Without y component, the results should be equal for both PZSUM and PYZSUM.

2. With a ‘strong’ y component (θ = 75◦ at the apex), to test the performance difference
where the PZSUM assumes θ = 0 at the apex.

3. With two intertwined upgoing and downgoing waves of different py – to test if the scalar
can differentiate between closely spaced events.

4. With events of opposite py, but shifted along the inline direction. These apex of these
events will overlap at px = 0. The scalar 1

vppx
should be equal for both waves – but

the Vy data will destructively interfere in the τ -px domain, causing the TGR to fail and
find a py = 0 at these inline slowness values.

The true 3D incidence angle at every receiver location is θ3D = arctan(

√
(ys−yr)2+(xs−xr)2

zs−zr ),

while the PZSUM angle is a 2D approximation, thus equals θ2D = arctan(xs−xrzs−zr ). The
difference between PZSUM and PYZSUM is thus naturally largest for large crossline distance.

Table 3-1: The locations of the buried sources, and the test case that they represent.

Case xs (m) ys (m) zs (m)

No y component 0 0 500

Strong y component 0 800 200

Overlapping time
No y component
Little y

0
0

0
600

1300
1200

Overlapping space
Medium y
Opposite y

0
800

-1500
1500

1500
1500
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Figure 3-8: The synthetic data created using buried sources at locations specified in Table 3-1.
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Figure 3-9: The τ -px transform of the synthetic data created using buried sources at locations
specified in Table 3-1, and the PYZSUM scalar computed from this data. Note that
the scalar varies smoothly, except on those points where the τ -px transform shows
two overlapping events.
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Quality check of the deghosting results

We will use three main methods to quality check (QC) the data: visually, with the use of the
frequency spectrum, and using the autocorrelation function.

The first method we will use is a visual check of the shot gather: we may visually establish
whether the deghosting has been able to sharpen the image, and whether artefacts show up.
In the case of synthetic data, we may look at individual traces and compare the found trace
to the true upgoing wavefield.

The second method is a look at the spectra, as we assume the deghosting procedure removes
the ghost notches from the data. In the synthetic case we may again judge the performance
with respect to the known solution. In real data, we may observe which method visually seems
to fill the notch. Notches in the spectra of the input data may result from the destructive
interference of different events rather than be caused by the ghost.

The third and last method, is to look at the autocorrelation function (ACF) of the data. The
ACF is defined as

r(t) =

∫ ∞

−∞
f(τ)f(τ + t) dτ. (3-12)

If the data f is an infinite and random signal, as the earth response may be approximated,
the ACF will have a spike at t = 0, and return 0 elsewhere – the signal could be considered
incoherent if it is advanced in time. The presence of the ghost at fixed t∆ will however show
up in the ACF at r(t∆), as every recorded event appears twice, at a lag of t∆. We may thus
expect that the deghosting operation will remove this lag. Because this result is only valid
along traces with equal ghost delay, we preferedly apply the ACF along single events. In the
synthetic data set it is possible to provide almost complete separation of events (except where
they overlap), thus we may employ the ACF in the offset-time domain. For real data, the
interference between events with different ghost delays prohibits a detailed study of the ACF
in the offset-time domain. However, by applying a normal moveout (NMO) correction to the
data, we can turn the data into zero-offset data when using the correct velocity model. In
the real data sets, we may NMO correct the data for the strong sea bottom reflection, using
the acoustic wave velocity in water. Because the sea-bottom reflection is much stronger than
surrounding events, it dominates the ACF result, and will provide another check to see if the
ghost energy has been removed.

QC of the synthetic results

We can now compare the result of the PZSUM and the PYZSUM. First visually, as in Figures
3-10 and 3-11. The difference between the two, is that one applies the PYZSUM for the entire
section (hence, has a wrong scalar where events in the τ -px domain overlap), and a PYZSUM
which is applied through 50% overlapping tapered, moving windows. We use this second
approach (overlapping windows) to look closely at the zero-offset traces in Figure 3-12. We
can come back to our four cases: the PYZSUM is in all cases at least as good as the PZSUM
for restoring the upgoing wavefield.

1. No y component: the two methods produce the same results.
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2. Strong y component: The PYZSUM deghosts the event (the wavelet looks like the one
without y component above), whereas the PZSUM has a ghost left visible as the black
shadow beneath the wavelet. Looking at a single trace (Figure 3-12) we notice the
upgoing wave was not fully restored. This is due to the median filter smoothing of the
scalar, switching between no amplification (1) and the amplification required (5).

3. The intertwined events: The PYZSUM again outperforms the PZSUM, by removing
the ghost.

4. The interfering events: As was predicted, and is visible in the scalar (Figure 3-9), there
is no amplification for the interfering events near px = 0, thus these events are not
deghosted. Note, additionally the ‘bow-tie’ artefacts around the apex. These artefacts
arise from the strong variation in the scalar near these slowness values.
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Figure 3-10: Comparison between the PZSUM and the PYZSUM applied on the entire synthetic
data set. A time gain of t has been applied to the traces, the colorscale is equal
for both images.
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Figure 3-11: Comparison between the PZSUM and the PYZSUM as applied in tapered over-
lapping, moving windows. A time gain of t has been applied to the traces, the
colorscale is equal for both images. Note that the errors of the previous section are
now merely localised remaining ghosts. The moving windows thus improve upon
the method.
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Figure 3-12: Comparison between the PZSUM and the tapered overlapping, moving window
PYZSUM by looking at a single trace for xr = 0. A time gain of t has been applied
to the traces. We observe that the PYZSUM does a better job at approximating
the true upgoing wavefield.
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Furthermore, we may take a look at the power spectral density found in the traces, Figure 3-13.
We note similar conclusions as made before: the PYZSUM achieves a better approximation
to the upgoing wavefield than the PZSUM, in case of crossline energy propagation.
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Figure 3-13: Power spectral density for the four events. The legend is the same as for Figure
3-12: blue for the ghost P, green for the PZSUM, black for the PYZSUM, red for
the true upgoing wave.

We may draw the conclusion that the PYZSUM outperforms the PZSUM if:

1. There is a (strong) crossline component. In seismic data, this will usually be
limited to the first few reflections and refractions.

2. Events are separated by the τ-px transform. Interference of events with different
py in the V̄y(τ -px) domain will generate a scalar that is wrong for both events. One
way to counteract this possibility, is to perform the PYZSUM on individual overlapping
and moving windows in the x-t domain. The windowing approach will further separate
data, and keep errors localised.

3. Special attention needs to be paid to the design of a median filter for short
events in the τ-px domain. The smoothing resulting from the 2D median filter will
naturally favor events with energy along both the τ and px axis. The proposed work-
flow here naturally favors hyperbolas and broad wavelets, which will cover large areas
in the τ -px panel.
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Figure 3-14: The autocorrelation for the four events, using a mask. The ghost in the autocor-
relation has been annotated by a red arrow, the removal of the ghost by a green
arrow. Linear artefacts arise when two events with different ghost time delays
interfere, violating the ‘single time delay’ we assumed in the ACF.
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3-3 Application to real data

The above described implementation of the PYZSUM was applied in 50% overlapping moving
windows in the x-t, on two different real data examples.

3-3-1 Real data 1

We consider a first data set, characterized by simple vertically stratified geology. The data is
relatively noisy, as it was acquired during unruly sea conditions. This will test whether the
method is able to deal with noise. To highlight the improvement brought by the PYZSUM,
we require strong crossline energy propagation. We therefore pick an outer cable with largest
offset from the source (Figure 3-15). This makes the 2D approximation assumed by PZSUM
invalid as the early reflections contain noticeable crossline energy. The nominal towing depth
is h = 18 m, leading to a vertical incidence ghost delay of 24 ms.
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Figure 3-15: The acquisition geometry of the considered streamer in the real data set uses an
outer cable, to maximize the crossline energy.

The complete set of pressure measurements, vertical particle velocity and crossline particle
velocity is shown in Figure 3-16.
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Figure 3-16: The multisensor measurements of real data set 1, after applying a time gain of t.
Note that the Vy component is strong only on the first events. Also notice the
strong low frequency noise characteristics (which become apparent particularly at
later times after applying the time gain) on both particle velocity measurements.
The color scale is the same for all figures.
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The first second of the shot, deghosted with PZSUM, ODG and PYZSUM, is shown in
Figure 3-17 (the full deghosted shot is shown in the appendix, Figure B-1). The deghosting
by ODG leaves clear artefacts over the first reflection. This is expected due to the strong
crossline propagation of energy, which invalidates the 2D approximation adopted by ODG.
The PZSUM and PYZSUM results appear very similar and generally less blurred than the
result from ODG.
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Figure 3-17: The shot gather of the real data set 1, deghosted with PZSUM, ODG and PYZSUM.
The color scale has been clipped on purpose to show artefacts. A time gain of t2 has
been applied to the data. The green arrows denote some examples of the upgoing
wavefield, red arrows their ghost, and the black arrow at the ODG highlights an
artefact before the wavefield (the precursor).
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The frequency spectra in Figure 3-18 show significant differences for the first small offset
reflection events (the first three panels): a gain of about +6 dB (or, a factor 2) in filling the
first frequency notch. This effect is expected for the following reason: the crossline energy
propagation is greater than the inline propagation for a small inline – but large crossline
– distance to the source. The 2D approximation of the PZSUM and ODG imply that the
methods will not be able to recover the upgoing wavefield. The PYZSUM, conversely, takes
this crossline component into account, and thus restores the upgoing wavefield better. The
PZSUM and PYZSUM obtain similar results at larger offsets, as demonstrated in in panel 4.
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Figure 3-18: Power spectral density plot for the real data set 1 for the PZSUM, ODG and
PYZSUM.

A normal moveout correction is applied to the data, with constant velocity of 1484 m/s (Figure
3-19). This flattens the first sea bottom reflection (0.23 s) and the multiples afterwards (0.38
s, 0.53 s, 0.68 s), which are assumed to contain the largest crossline energy components, and
correspondingly the largest difference between the deghosting methods ODG, PZSUM and
PYZSUM. We observe the ghost clearly on the NMO corrected input pressure data. The
ODG shows an artefact advanced in time before the first arrival (annotated) – signalling
again that the ODG uses a ghost model that does not correspond to the data. The PZSUM
and PYZSUM both show a similar quality of deghosting.

We then perform the ACF on this NMO corrected section from t = 0.15 s to 0.79 s, as shown in
the bottom of Figure 3-19. The input pressure data shows the ghost as a strong negative value
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in the ACF function at approximately 0.018 s, corresponding to the ghost delay time. The
deghosting should aim to remove this negative band. The ODG does not significantly reduce
this negative band, but we observe a general improvement for the PZSUM and PYZSUM. As
visible in their respective NMO windows, there appears to be an event shortly after the sea
bottom reflection that interferes with the sea bottom reflection, which appears like a residual
ghost, but is in fact a recovered primary reflection event. This reflection event also becomes
visible in the ACF of the PZSUM and PYZSUM.

We then stack the ACF of all four panels, resulting in the coloured lines. The stack allows
an easier comparison of the general ACF result. This ACF stack suggests that the ghost
is removed best by the PYZSUM, as it shows the smallest negative value at the ghost time
delay.

Figure 3-19: The ACF as calculated for the NMO corrected original and deghosted shots of real
data 1. The coloured lines are the stacked autocorrelations. The PYZSUM has a
marginally smaller negative ACF at the ghost delay time than PZSUM, and clearly
performs better than the ODG. The green arrow at the PYZSUM shows a primary
reflection just after the first sea bottom reflection, visible on the NMO corrected
section and the ACF. The black arrow highlights the precursor artefact on the ODG.
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3-3-2 Real data 2

The second set of real data comes from a more structurally complex geology, containing
several diffractions, including energy propagating in the crossline direction. The nominal
towing depth is 25 m, thus the time delay for vertical incidence is approximately 33 ms. The
data comes again from an outer cable, suggesting significant crossline energy propagation
must be expected for the first few reflections, similar to the previous data set. The data is
generally more clean than the first real data set, although the poor S/N at low frequencies of
the particle velocity measurements is still visible (Figure 3-20).
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Figure 3-20: The multisensor measurements of real data set 2, after applying a time gain of t.
Note that the Vy component is strong particularly on the sea bottom reflection
(0.52 s) and its multiples (1 and 1.5 s). Note the strong low frequency noise
characteristics, which become apparent at later times after applying the time gain,
on both particle velocity measurements. The color scale is the same for all figures.
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The first two seconds of the shot, deghosted with PZSUM, ODG and PYZSUM, are shown in
Figure 3-21 (the full deghosted shot is shown in the appendix, Figure B-3). The deghosting
by ODG again generates artefacts before the sea bottom reflection, again due the the invalid
2D approximation of the wavefield. The PZSUM and PYZSUM appear similar and generally
less blurred than the result from ODG.
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Figure 3-21: The shot gather of the real data set 2. The color scale has been clipped on purpose
to show artefacts clearly. A time gain of t has been applied. The green arrows
denote some examples of the upgoing wavefield, red arrows their ghost, and the
black arrow at the ODG highlights an artefact before the wavefield (the precursor).
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Like the first processed data set, we may again plot the frequency spectra for selected windows,
as done in Figure 3-22. We observe a similar effect that the PYZSUM manages to fill in the
first frequency notches with more energy than ODG and PZSUM at small inline receiver offsets
(panels 1, 2 and 4). The PZSUM and PYZSUM obtain similar results for the diffraction event
(panel 3).
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Figure 3-22: Power spectral density plot for the real data set 2 for the PZSUM, ODG and
PYZSUM.
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We then apply NMO correction to the data again with a constant velocity of 1484 m/s, to
flatten the sea bottom reflection (0.55 s) and its multiple (1.02 s), shown in Figure 3-23. The
ghost and its removal are again easy to observe.

The NMO correction is then used as an input to the ACF, shown in the bottom of Figure
3-23. We may observe the ghost as a negative value at ACF lag of 29 ms in the input pressure
data. The ODG has not been able to fully remove this ghost artefact from the data, as the
ACF still shows significant energy at this time lag. The PZSUM shows less energy at the
ghost delay time, but its stacked ACF value (yellow) still shows a small remaining trough at
this lag. The PYZSUM appears visually similar to the result of the PZSUM, but it’s stacked
ACF shows no remaing trough at the ghost delay time. In the comparison of all stacked ACF
sections, we again observe that the PYZSUM removes most of the ghost.

Figure 3-23: The ACF as calculated for the NMO corrected original and deghosted shots of real
data 2. The red line is the stacked autocorrelation. The PYZSUM outperforms
the other two deghosting methods, which show a residual ‘bump’ corresponding to
the ghost (at about 29 ms).
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Chapter 4

Data-driven multisensor adaptive
deghosting

4-1 Motivation

4-1-1 Pitfalls of Energy Minimization

We established in Chapter 2 that energy minimization of single sensor data (cf. Schuberth,
2015) has limitations. Notably, it cannot estimate a ghost delay smaller than the reciprocal
of the usable bandwidth (i.e. does not detect t∆ < 1

fnotch 1
). Secondly, the method obtains

several potential time delays, and picks the one without a multiple integer time delay. In real
data, a frequency notch may originate from the ghost but may also originate from destructive
interference of primary reflections – the time delay corresponding to a notch in the data may
accidentally lead to the ‘minimum energy’ solution. Multisensor acquisition offers advantages
in this situation, as the ghost on P and Vz is complementary: notches due to the ghost are
offset by exactly half a period, while the inherent notches of the upgoing wavefield are present
in both. We will explore a way to expand the adaptive deghosting cf. Schuberth (2015) to
the multisensor case, to overcome the limitations in energy minimization.

4-1-2 Multisensor cost functions

As in Schuberth (2015), we will assume our data is described by a ghost model, and will test
which ghost model in a range of ‘trial’ ghost models best corresponds to the data. We thus
need a cost function that indicates the proximity between the ghost model in the data and
our trial ghost model.

Assume, for a moment, a single event and its ghost on the pressure P̃data and particle velocity
Ṽz,data. Assume we know the correct reflection coefficient, and we want to test a range of
potential time delays t∆, and assess the performance. A range of multisensor cost functions
suggest themselves:
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1. Applying energy minimization on both components individually (P̃data and Ṽz,data).
The correct ghost model should appear as a ‘peak’ in both cost functions, if we take the
reciprocal of the minimum energy for display purposes. We could combine the terms in
a single cost function where we add both cost functions together. Note that deghosting
Ṽz,data by G̃z returns the units of pressure, i.e. should also be normalized to the recorded
pressure field.

J1 =
1

2




∥∥∥ P̃data

G̃p

∥∥∥
−2

2
+
∥∥∥ Ṽz,data

G̃z

∥∥∥
−2

2∥∥∥P̃data

∥∥∥
−2

2


 . (4-1)

We call the method ‘incoherent energy minimization’, as we evaluate the components
individually. We may predict that, similar to energy minimization, this method has an
estimation limit at approximately half that for just P (as the first ghost notch on Vz
lies at half that of the P data). Below this limit, both methods would fail to respond
significantly to the inverse ghost filters.

2. Applying energy minimization on an estimation of the upgoing wavefield through ODG.
This method is a ‘coherent energy minimization’, as we jointly use the two components
prior to the energy minimization. Assuming no noise, the cost function may be formu-
lated as the inverse of a normalized energy, for display purposes:

J2 =

∥∥∥∥
G̃∗pP̃data+G̃∗z Ṽz,data

|G̃p|2+|G̃z |2

∥∥∥∥
−2

2∥∥∥P̃data

∥∥∥
−2

2

(4-2)

3. To formulate the ODG solution, a least squares cost function is derived and then min-
imized. By substituting the ODG solution back into the least squares cost function,
we get a cost function which may be rewritten as a ‘cross ghost’ (Appendix A-4-4).
The cross ghost means we apply a trial ghost model Gz to the ghosted pressure data,
and apply a trial ghost model GP to the ghosted vertical particle velocity data. If we
subtract both terms, they should provide exactly 0. Again, we take the reciprocal of
this function for display purposes below:

J3 =
∥∥∥G̃zP̃data − G̃pṼz,data

∥∥∥
−2

2
(4-3)

As a test case, consider a 40 Hz Ricker wavelet, which has a maximum frequency of 100
Hz. This means that the single component energy minimization has an estimation limit for
t∆ < 1

100 s, or 10 ms. Assuming vertical incidence, we set pz = 1
vp

in the ghost model Gz. The

three different cost functions are tested on time delays of 25 ms (Figure B-5), 5 ms (Figure
B-6) and 2 ms (Figure 4-1).

The figures demonstrate the following. The first cost function J1 shows less ambiguity in
potential time delays as its maximum is the true time delay for 25 ms and 5 ms (unlike
energy minimization). However, it also has an estimation limit at half of the single component
energy minimization as predicted, making it unsuitable for the estimation of small delay
times. The coherent energy minimization (J2) manages to pick the time delay also at delays
smaller than this estimation limit. However, the cost function has a rather ‘broad’ shape,
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such that solutions off by several milliseconds may erroneously be picked as the optimal cost
function. The cross ghost (J3) picks the correct time delay with great precision, as it is the
only maximum visible in the plot. Based on the examples, we realise that the cross ghost
is the best cost function to estimate an adequate ghost model that fits the data. The other
cost functions rely on the generation of ringing artefacts as a result of the deconvolution.
The ringing does not significantly show up beyond the estimation limit ( 1

fmax
for energy

minimization, 1
2fmax

for incoherent energy minimization). The cross ghost thus works on a
very different principle than energy minimization.
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Figure 4-1: Three multisensor cost functions evalued to test their sensitivity to the true ghost
delay of 2 ms, using a wavelet with a maximum frequency of 100 Hz. The cross
ghost is the only cost function able to accurately detect the correct time delay.
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4-2 Two and three component Cross Ghost

4-2-1 Two and three component Cross Ghost

The formulation of the two component cross ghost can be found in Equation 31 of Amund-
sen (1993). Assuming a source above the receiver, we know that all pressure data has
a receiver ghost, except for the direct arrival which is only downgoing. We could de-
scribe the recorded data in the f -kx-ky domain then as P̃data = P̃direct + G̃pP̃up, and

Ṽz,data =
(
− kz
ρω P̃direct + G̃zP̃up

)
. We can eliminate P̃up from both equations to reach

P̃data−P̃direct

G̃p
=

Ṽz,data+ kz
ρω
P̃direct

G̃z
, or:

2P̃direct = G̃zP̃data − G̃pṼz,data. (4-4)

If we thus make the assumption that there is no direct arrival in the data, or remove it in
prior steps, this function evaluates to 0 for the correct ghost model.

The cross ghost as a cost function comes up also in Ozdemir et al. (2009), where it is a required
step in deriving the least squares ODG solution. In the patent, they describe the ghost system
as Mdata = GPup, with Mdata a vector with all the measured components, and G a vector
with all corresponding ghost models. The least squares solution is found by minimizing(
M̃ − G̃P̃up

)∗
C−1

(
M̃ − G̃P̃up

)
, with C the noise covariance matrix. Substituting the ODG

solution for P̃up into this cost function returns an equation which looks exactly like the
cross ghost (Appendix A-4-4). The additional advantage is the inclusion of the noise model.
Assuming the noise is uncorrelated between different sensors, we may write the system in the
f -kx-ky domain as:

J(α) =

∑
i<j
|G̃j(α)M̃i−G̃i(α)M̃j |2

σ2
i σ

2
j

∑
i
|G̃i(α)|2
σ2
i

, (4-5)

with α the desired parameters of the ghost model, i and j refering to the different components,
and σ2 the noise variance corresponding to each component.

For three components this cost function is written as:

J(α) =

|G̃yP̃data−G̃pVy,data|2
σ2
pσ

2
y

+
|G̃zP̃data−G̃pVz,data|2

σ2
pσ

2
z

+
|G̃zṼy,data−G̃yṼz,data|2

σ2
yσ

2
z

|G̃p|2
σ2
p

+
|G̃y |2
σ2
y

+ |G̃z |2
σ2
z

. (4-6)
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4-2-2 Sensitivity analysis

The two components cross ghost

Assuming that our data consists of P̃data = G̃pP̃up and Ṽz,data = G̃zP̃up, we may rewrite
the two-component cross ghost, and show that the cross ghost equals 0 for if the trial ghost
models (G̃p and G̃z) correspond to the data. The formulation is easiest in the f -p domain:




p′z
ρ

(
1 + |r′0|e−2πift′∆

)

︸ ︷︷ ︸
trial ghost model of Vz

(
1− |r0|e−2πift∆

)
P̂up

︸ ︷︷ ︸
pressure data


−



(

1− |r′0|e−2πit′∆

)

︸ ︷︷ ︸
trial ghost model of P

pz
ρ

(
1 + |r0|e−2πift∆

)
P̂up

︸ ︷︷ ︸
velocity data




(4-7)

=
p′z
ρ

(
1 + |r′0|e−2πift′∆ − |r0|e−2πift∆ − |r′0||r0|e−2πif(t∆+t′∆)

)
P̂up −

pz
ρ

(
1− |r′0|e−2πift′∆ + |r0|e−2πift∆ − |r′0||r0|e−2πif(t∆+t′∆)

)
P̂up,

(4-8)

=

(
p′z − pz
ρ

)(
1− |r′0||r0|e−2πif(t∆+t′∆)

)
P̂up +

(
p′z + pz
ρ

)(
|r′0|e−2πift′∆ − |r0|e−2πift∆

)
P̂up.

(4-9)

It is straightforward to show that the function goes to zero if all tested parameters (t′∆, r
′
0, p
′
z)

correspond to the true values. The full sensitivity of the cost function is derived in Appendix
A-5, the conclusions of which follow below.

Sensitivity of the two and three component cross ghost

The sensitivity of the three components (pressure, vertical particle velocity and crossline
particle velocity) cross ghost is not analytically derived, and has instead been studied by
evaluating the cost function for various ghost models and wavelet spectra. An important
realisation is that the addition of an additional ghost model in the three component cross
ghost – being Ĝy =

py
ρ (1 − |r0|e−2πift∆) – appears to introduce the crossline slowness as yet

another parameter that has to be established. However, under the assumption that the inline

slowness px is already known through e.g. a τ -px transform, we know py = ±
√

1
v2
p
− p2

x − p2
z.

Thus, py is a function of px and pz. Thus the three component cross ghost function is sensitive
to the same three parameters as the two component cross ghost: (t′∆, |r′0|, p′z). We want to
study the shape of the cost function, to know if more minima exist in the cost function, and
which parameters have the biggest influence on the cost function. This sensitivity is described
for the three parameters below:

1. For a correct pz and |r0|, the cross ghost will find a single, correct, ghost time delay
t∆ by doing a 1D line search for t∆. A 1D line search means an evaluation of the cost
function for many different t∆ values, and picking the minimum. The minimum is found
regardless of the frequency content of the wavelet. This makes the cross ghost approach
superior to the sinigle sensor energy minimization approach which was limited by the
frequency content. This confirms our finding that the cross ghost was able to estimate
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a time delay of 2 ms in Figure 4-1, beyond the energy minimization estimation limit of
either P or Vz.

2. For a varying pz and t∆, we observe a coupling between pz and t∆, additionally depen-
dent on the time delay and frequency content. We employ a 2D line search, evaluating
the cross ghost at all combinations of t∆ and pz, which is shown below. We plot the
results in terms of ∆t∆ and ∆pz, which is the absolute difference with respect to the
true ghost model, such that ∆t∆ = ∆pz = 0 is the true desired result.

(a) A high time delay (15+ ms). This shows relatively little coupling between the
vertical slowness and time delay, such that a single global minimum is present.

i. With a low maximum wavelet frequency (50 Hz):

(a) 2C cross ghost (b) 3C cross ghost

Figure 4-2: 2D line search along the cross ghost for a large time delay of 25 ms, with a low max-
imum frequency. The correct minimum time delay (∆t∆ = 0) is found irregardless
of pz, but the three component cross ghost shows the most distinct minimum.

ii. With a high maximum wavelet frequency (180 Hz):

(a) 2C cross ghost (b) 3C cross ghost

Figure 4-3: 2D line search along the cross ghost for a large time delay of 25 ms, with a high max-
imum frequency. The correct minimum time delay (∆t∆ = 0) is found irregardless
of pz, but the three component cross ghost shows the most distinct minimum.

We may generally observe that there is a single global minimum, i.e. a single
combination of pz and t∆ which minimizes the cross ghost. The three component
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cross ghost provides the largest distinction between the wrong and right ghost
model.

(b) A small time delay (10- ms). The cross ghost cost function shows a coupling
between pz and t∆.

i. With a low maximum wavelet frequency (50 Hz):

(a) 2C cross ghost (b) 3C cross ghost

Figure 4-4: 2D line search along the cross ghost for a small time delay of 25 ms, with a low
maximum frequency. The minimum in time delay t∆ and pz couple, such that picking
one variable wrong leads to a wrong estimation of the other.

ii. With a high maximum wavelet frequency (180 Hz):

(a) 2C cross ghost (b) 3C cross ghost

Figure 4-5: 2D line search along the cross ghost for a small time delay of 25 ms, with a high
maximum frequency. The minimum in time delay t∆ and pz couple, such that picking
one variable wrong leads to a wrong estimation of the other.

Although the global minimum still lies at the true ghost model, we observe a
‘valley’ in the cost function of minima corresponding to a wrong t∆ and pz. The
three component cross ghost and a higher frequency content both provide greater
distinction between the global minimum and the other values.

The values t∆ and pz clearly couple in a way that affects the cross ghost in a complex
manner, with a global minimum only at the correct combination of t∆ and pz.
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3. The cost function is hardly affected by varying the reflection coefficient, i.e. the cross
ghost is minimum for the correct delay time, irregardless of the tried reflection coeffi-
cient. This is shown in Figure 4-6.

Figure 4-6: Evaluating the upper bound of the the cross ghost cost function, while varying both
the dimensionless reflection coefficient and the time delay around the true (desired)
values. Its clear that the time delay has the biggest importance. The true solution
lies at ∆t∆ = ∆|r0| = 0, which is the global minimum of this function.

Based on the sensitivity analysis above, we observe that the cross ghost is particularly sensitive
to t∆ and pz. If we want to use the cross ghost as a cost function to estimate the ghost model
in our data, we must thus employ a 2D search (just like the figures above) to find the global
minimum at the correct pz and t∆. The reflection coefficient may be ignored in the search
initially, and may be assumed to be 0.95. The sensitivity analysis shows that quadratic
convergence is found to the true |r0| after finding the correct t∆ and pz. If desired, the
reflection coefficient may thus be estimated with a 1D line search, after estimating the correct
time delay and vertical slowness.

4-2-3 Implementation

The cross ghost may be used to drive a two or three component adaptive deghosting algorithm.
We propose the steps for such an algorithm below.

1. Transform the section to windows. We established that the cross ghost can help
to find the ghost model parameters (ghost time delay t∆ and vertical slowness pz) on
a single trace. The natural domain to apply this cost function in is the τ -px domain,
because a single px trace is associated to approximately a single time delay. As we
know that the time delay and slowness may vary through time and space, we choose
to apply the method not on the entire shot gather. As such, 50% overlapping tapered
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moving windows in the space-time domain are deghosted individually, and recombined
afterwards.

The windows that we employ are ideally as small as possible, such that we allow for
the largest variation of our parameters through space and time. A high quality τ -
px transform, conversely, requires the use of large offsets and long time intervals. A
compromise must thus be found. We choose to take windows of approximately 0.2
seconds (100 samples at ∆t = 2 ms) and 612 meters (100 samples at ∆x = 6.125 m),
which produce a relatively sharp τ -px panel (Figure 4-7).
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Figure 4-7: The window size influences the quality of the τ -px transform, where a larger window
will provide a more ‘focused’ transform. The data is from the real data set 1 (see
previous chapter). The used settings in this thesis are windows of 100×100 samples
in space and time, such the second and fourth line give a sense of the expected
resolution that goes into each step.
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2. Transform P , Vz and Vy to the f-px domain.

We apply first a τ -px transform as in the previous chapter, using the same slowness
sampling ∆pz = 2∆t

|xmax| and slowness range ± 1
1200 s/m. We can then apply a Fast

Fourier Transform (FFT) along the τ direction to get the data in the f -px domain.
The number of frequencies in the FFT does not have to be oversampled in the Fourier
Transform-based τ -px transform used in this thesis. The τ -px transform result contains
essentially all the frequency information possible.

3. Perform the 2D line search for the cross ghost per px trace.

We can now evaluate the two or three component cost function, Equation (4-6), per px
trace. We perform a 2D line search along time and vertical slowness.

(a) The ghost delay times are scanned between horizontal incidence and vertical inci-

dence, i.e. between t∆ = 0 and t∆ = 2(h + ∆h)
√

1
v2
p
− p2

x (allowing some margin

of error for the streamer depth h).

(b) The vertical slowness is scanned between horizontal incidence and vertical inci-

dence, i.e. between pz = 0 and pz =
√

1
vp
− p2

x.

For the 3 component cost function, we must consider that py = ±
√

1
v2
p
− p2

x − p2
z, it

may thus be positive or negative. We decide to pick the sign of py as that sign which
minimizes the cost function.

Our implementation of the 2D line search evaluates 200 different time delays and 10
different pz values, for each slowness in the signal cone (|px| < 1

vp
). We then pick the

minimum value of the cost function and record the corresponding t∆ and pz.

4. Deghost in the τ-px domain

The information obtained through the line search may now be used to deghost the
data. We have at least two methods available now: we can perform a PZSUM in the

τ -px domain using the found pz as our 3D scalar, i.e. P̄up = 1
2

(
P̄ + ρ

pz
V̄z

)
, or perform

ODG in the f -px domain. The PZSUM is generally the prefered method, as it will not
generate any ringing at all, whereas the ODG with an incorrect ghost model will cause
ringing artefacts. We choose to merge the two results, following Caprioli et al. (2012),
using the ODG approach to keep control over the noise characteristics of the output for
frequencies below 20 Hz, and the PZSUM in the good S/N spectrum above 20 Hz.

4-2-4 Illustration on synthetic data

We can prove the concept on the same synthetic data set used for the PYZSUM (Section
3-2-3). An important distinction is that we deghost the four test cases individually, rather
than processing the data set as a whole. This way, we can show the picked time delay and
picked vertical slowness compared to their theoretical functions (Figure 4-8). We can make
the following observations based on the picked ghost delay time t∆ and pz:

1. Inline propagation: The 3C cross ghost is able to perfectly find the ghost parameters
for inline propagation, thus can reproduce PZSUM results.
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Figure 4-8: The time delay and vertical slowness picked by minimizing the cross ghost function
(blue) compared to the true solutions (red, yellow if a second true solutions exist).
Notice that the time delay corresponds to the true time delay fairly well – whereas
the vertical slowness may be off. The reason for this is that the line search along the
time delay takes 200 steps, and the line search along pz takes 10 steps. Whenever
the pz is thus not completely ‘on point’, this is due to the very rough approximation
to the true pz.
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2. Significant crossline propagation: The 3C cross ghost finds the correct ghost delay for
the extreme angle of incidence, but estimates a too small pz. The reason for this is
that the line search along pz samples only 10 values. This error is thus caused by the
implementation of a low resolution search along pz.

3. Two intertwined events: If two events with different time delays are present on the same
px trace, the cross ghost function still can only return a single minimum time delay. In
this case, we observe that the cost function is inconsistent. For the vertical incidence, it
picks the (correct) smallest time delay, whereas for greater angles of incidence it picks
(incorrect) higher time delays. In all cases, it picks the vertical slowness belonging to
the event with inline propagation.

4. The interfering events: In the case of two opposing py values, the three component cross
ghost cannot properly find the correct time delay at all because it can only choose + or
−py, and neither option fits the data well. However, the two component cross ghost (as
used for specifically this fourth event), does not have this issue. The two component
cross ghost is thus able to find nearly the correct time delay and vertical slowness. The
artefacts appearing at the vertical slowness are, again, due to the low resolution line
search along pz. The lack of results beyond ±5.5× 10−4 s/m is due to the lack of these
slowness values in the data itself.

The data is deghosted based on the obtained t∆ and pz, as is shown in Figure 4-9, and
compared against the ODG algorithm with a fixed nominal depth. We see that the adaptive
deghosting algorithm clearly outperforms the ODG, except at the intertwined events, which
causes artefacts. We can confirm this observations by looking at the zero offset traces in
Figure 4-10 and the power spectral density in Figure 4-11. The autocorrelation of Figure 4-12
further confirms that the ghost is removed better with the adaptive deghosting than with the
deterministic ODG.
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Figure 4-9: The synthetic data deghosted with the ODG method (nominal depth h = 50 m),
versus the adaptive deghosting method based on the cross ghost. The poor deghost-
ing result from 0.8 seconds and further down was to be expected, as they mix events
of different ghost time delays, whereas the adaptive method can only pick a single
time delay per slowness px. A time gain of t has been applied to the data.

August 12, 2016



66 Data-driven multisensor adaptive deghosting

54.04.053.03.052.0

-4
-2
0
2
× 10-5 Comparison between ODG and Cross Ghost at xr=0

Pghosted
ODG
3C Cross Ghost
Pup true

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

-4
-2
0
2
× 10-5

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

-4
-2
0
2
× 10-5

55.15.154.14.153.1
Time (s)

-4
-2
0
2
× 10-5

not adaptively deghosted

deghosted
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adequate deghosting for the second event only, as it picked the small delay time so-
lution. Conversely, the ODG only correctly deghosts completely inline propagation
of events.
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Figure 4-11: Power spectral density plot for the ODG and multisensor adaptive deghosting on
synthetic data. The legend is similar to that used in the previous Figure 4-10: blue
for the ghosted pressure, green for the ODG, black for the adaptive deghosting with
the cross ghost, and red for the true upgoing wavefield.
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Figure 4-12: The autocorrelation for the four events, using a mask. The ghost in the autocor-
relation has been annotated by a red arrow, the removal of the ghost by a green
arrow. Linear artefacts arise when two events with different ghost time delays
interfere, violating the ‘single time delay’ we assumed in the ACF.
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4-3 Application to real data

See Section 3-2-3 for information about the used QC methods and used data.

4-3-1 Real data 1

The first second of the deghosted shot is shown in Figure 4-13 (the full deghosted shot is
shown in the appendix, Figure B-2). We may make the same observations as made in the
previous chapter about the quality of the ODG (which appears blurry and with artefacts)
and PZSUM (looks relatively sharp). We may note that the adaptive deghosting does not
create significant artefacts like the ODG, and appears as sharp as the PZSUM.
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Figure 4-13: The shot gather of the real data set 1, deghosted with PZSUM, ODG and multi-
sensor adaptive deghosting. The color scale has been clipped on purpose to show
artefacts. A time gain of t2 has been applied to the data. The green arrows denote
some examples of the upgoing wavefield, red arrows their ghost, and the black
arrow at the ODG highlights an artefact before the wavefield (the precursor).
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We may then look at the spectra of the different deghosting methods (Figure 4-14). We
observe a similar gain of about +6 dB in the first frequency notches of the small offset events
compared to the PZSUM (panels 1, 2 and 3). We note on the longer offset (panel 4) that
the data appears to contain some 2 dB more in the lower and higher parts of the frequency
spectrum than the PZSUM. The ODG performs differently, and does not manage to fill the
frequency notch at the first panel at all.
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Figure 4-14: Power spectral density plot for the real data set 1 for the PZSUM, ODG and
multisensor adaptive deghosting (3C AD).
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We apply NMO correction tothe data with a constant velocity of 1484 m/s, as in Figure 4-15.
Similar to the PYZSUM before, we observe that a second reflection becomes visible directly
after the sea bottom reflection. This secondary reflection event is clearly most sharp and
continuous in the adaptive deghosting algorithm. We may again compute the autocorrelation
on a window of the NMO corrected data, as shown in the bottom of Figure 4-15. We observe
that the PZSUM and adaptive deghosting algorithm with the three component cross ghost
manage to remove the most energy at the time lag of the input pressure data P . After
stacking the ACF along the offset range, we observe that the ghost delay time lag is reduced
mostly by the three component adaptive deghosting.

Figure 4-15: The ACF as calculated for the NMO corrected original and deghosted shots for real
data 1. The red line is the stacked autocorrelation. The 3C Adaptive Deghosting
(3C AD) has a smaller ghost artefact than PZSUM, and clearly performs better
than the ODG. The green arrow at the 3C AD shows a second reflection just after
the first sea bottom reflection, visible on the NMO corrected section and the ACF.
The black arrow highlights the precursor artefact on the ODG.
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4-3-2 Real data 2

The first two seconds of the deghosted shot are shown in Figure 4-16 (the full deghosted shot
is shown in the appendix, Figure B-4). We may make the same observations as made in the
previous chapter about the quality of the ODG (which appears blurry and with artefacts)
and PZSUM (looks relatively sharp). We note that the adaptive deghosting did not create
significant artefacts like the ODG, and appears as sharp as the PZSUM.
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Figure 4-16: The shot gather of the real data set 2, deghosted with PZSUM, deterministic ODG
and multisensor adaptive deghosted. The color scale has been clipped on purpose
to show artefacts. A time gain of t has been applied. The green arrows denote
some examples of the upgoing wavefield, red arrows their ghost, and the black
arrow at the ODG highlights an artefact before the wavefield (the precursor).
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The frequency spectra of the deghosted data are shown in Figure 4-17. We observe that the
multisensor adaptive deghosting achieves a similar gain in amplitudes as observed for the
PYZSUM for all near-offset windows (panel 1, 2 and 4). The larger offset panel (window
3) showed a spectrum where the PZSUM and PYZSUM showed equal results, whereas the
adaptive deghosting provides a slight boost in amplitude for a number of frequencies. It is
impossible to say which method shows the correct result.
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Figure 4-17: Power spectral density plot for the real data set 2 for the PZSUM, ODG and
multisensor adaptive deghosting (3C AD).
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Lastly, we look at the NMO correct data using a constant velocity of 1484 m/s, as in Figure
4-18. Similar to the results at the PYZSUM before, we observe that the ODG leaves artefacts
in the NMO corrected window. We observe that the PZSUM and multisensor deghosting both
remove the ghost on the sea-bottom reflection (0.55 s) and its multiple (1.02 s). We turn to the
autocorrelation function in the bottom of the figure to make a quantitative statement on the
deghosting quality. We observe that all three methods (ODG, PZSUM and three component
adaptive deghosting) manage to reduce the negative value on ACF(P) at the ghost delay
time, linked to the ghost. However, both ODG and PZSUM have a remaining ‘bump’ at the
ghost delay time. Conversely, for the three component adaptive deghosting we find that the
negative value is completely removed at the ghost delay time, suggesting complete removal of
the ghost. Again, this result differs from that found with the PYZSUM, and it is not directly
obvious which result is the truly correct result.

Figure 4-18: The ACF as calculated for the NMO corrected original and deghosted shots of
real data 2. The red line is the stacked autocorrelation. The multisensor adaptive
deghosting (3C AD) outperforms the other two deghosting methods, which show
a residual ‘bump’ corresponding to the ghost (at about 29 ms).
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Chapter 5

Discussion & Conclusion

The receiver ghost degrades the broadband good S/N spectrum of the upgoing wavefield. Mul-
tisensor deterministic deghosting techniques may restore the upgoing broadband spectrum,
if their deghosting assumptions (such as an assumed streamer depth or incidence angle) cor-
respond to the data. We have shown a few examples where current deterministic deghosting
methods fail to recover the upgoing wavefield due to for example assuming that no energy
propagates in the crossline direction. We thus propose two novel single-streamer data-driven
deghosting methods, which adapt their deghosting filters based on the data itself.

The first proposed method overcomes the limitation of the PZSUM, which assumes energy
only travels upwards and along the streamer, i.e. a 2D approach. We propose to obtain the
3D incidence angle of events in our data, such that we can extend the PZSUM towards also
correcting for crossline (y) propagation of energy, a technique we name PYZSUM. To this
purpose, we use the Time Gradient Ratio (TGR) to estimate the crossline slowness py based
on the crossline particle velocity and pressure measurements. The TGR only works on non-
overlapping events. To limit the amount of overlap, we propose to transform the multisensor
measurements into the τ -px domain first, and perform TGR in this domain where events
are more separated. Using a 2D median filter we improve the S/N of the obtained py, by
removing outliers while preserving coherent events. These steps assign an inline and crossline
slowness to each sample in the τ -px domain, allowing computation of the 3D incidence angle
for all events in the data. We can then combine the pressure and scaled vertical particle
velocity measurements in the τ -px domain using the 3D incidence angles, the PYZSUM, and
transform the deghosted shot back to the time domain.

Testing on synthetic data showed that remaining overlap of events in the τ -px domain invali-
dated the ‘single event’ requirement of the TGR. We proposed an additional step to separate
events, using overlapping tapered windows moving over the data, applying PYZSUM on each
window individually. The data was thus separated in windows of x-t, and then further sep-
arated in windows of τ -px. After these steps, we assumed no overlapping events remained
in the τ -px domain. The PYZSUM in this form performed as good as, or better than, the
PZSUM in deghosting synthetic and real data. The real data set contained little crossline
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energy propagation, such that the improvement brought by the PYZSUM was a minor, but
noticeable improvement over the deterministic deghosting methods.

Future work on the PYZSUM should focus on improving the S/N characteristics of the TGR
result. Such work could study alternative filters to the 2D median filter, to increase the
S/N of the TGR output. The current 2D median filter in the τ -px domain favors broad,
coherent events, causing it to neglect sharp linear events (which map to a point in the τ -px
domain). Additionally, one could explore filters that make the input to the TGR less noisy.
We experimented with low-cut frequency filters, leading to poor results on real data, because
the low-cut broadened the wavelet, and then caused overlap of events – which invalidated the
single event assumption of the TGR.

The second proposed data-driven method is an extension of single sensor (cf. single sensor
energy minimization, Schuberth (2015)) to multisensor adaptive deghosting. The energy
minimization technique tries to estimate the ghost model (the reflection coefficient |r0| and
the ghost time delay t∆) from the data. Once the ghost model of the data is accurately
found, we can deghost the data with any deghosting techniques that depend on this ghost
model. However, the energy minimization approach cannot estimate a ghost delay smaller
than the reciprocal of the usable bandwidth, and may pick wrong ghost delay times due to
multiple possible ‘minimum energy’ solutions. The use of multisensor measurements removes
both of these limitations by employing a multisensor least-squares cost function called the
‘cross ghost’. This cross ghost is used to estimate the ghost model from the multisensor
data through trying a range of potential ghost models. We show analytically that the global
minimum of this cost function corresponds to the true ghost model. However, the cross ghost
cost function adds an additional unknown to the ghost model estimation: beside t∆ and |r0|
we also need to estimate the vertical slowness pz. We show that |r0| has a minor effect on
the deghosting result and cross ghost cost function, thus may be assumed a constant. To
remain a fully adaptive method, we assume no relation upfront between the remaining two
parameters, t∆ and pz. We evaluate the cross ghost cost function for a range of plausible
values for t∆ and pz (a 2D line search), and pick their global minimum as the ghost model
that best describes the data. The cross ghost may be restricted to the pressure and vertical
particle velocity only, but is made more robust by including the crossline particle velocity.

We can perform the 2D line search per trace to find an optimal ghost model (t∆, pz and if
desired |r0|). The method thus favors the τ -px domain, where a single px trace corresponds
to approximately a single delay time and vertical slowness. To allow for a varying ghost
model in space and time, we use tapered overlapping, moving windows in the x-t domain. We
then deghost the data using the obtained ghost model, using for example PZSUM or ODG.
A limitation of using the τ -px transform is that the up- and downgoing waves may map to
different px under rough sea conditions, complicating the time delay search. Nevertheless, the
adaptive algorithm generated excellent results in deghosting two real data sets. The method
outperforms both the PZSUM and ODG in synthetic and real data.

Future work on multisensor adaptive deghosting may study ways to speed up the sampling of
the cost function, rather than employing a 2D line search for all t∆ and pz. One could study
stochastic methods to optimize this search. We performed tests to turn the 2D line search
into a series of 1D line searches. We show that t∆ and pz relate as t∆ = 2htruepz, and may
use an estimate of the streamer depth h to write pz(t∆) = t∆

2hnominal
. We may then do a 1D

line search along the time axis to find a minimum. However, if h is wrong, we will use the
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wrong pz and may correspondingly find a local minimum rather than the global minimum of
the cost function (i.e. Figure 4-4a). More research is required to show if an iterative use of
the 1D line search could converge to the global minimum.

In conclusion, we have shown two data-driven multisensor deghosting methods. We found
that these methods perform as good as deterministic deghosting techniques when the assump-
tions of deterministic deghosting techniques are met. The data-driven deghosting techniques
are superior to the deterministic deghosting techniques when their 2D energy propagation
assumption is not met, as illustrated on real data.
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Appendix A

Derivations

A-1 Inverse ghost filter

Figure A-1 schematically shows the working of the inverse ghost filter. This to illustrate
that the ringing is an inherent feature of the inverse filtering process. It also shows how the
filter manages to preserve the phase information, and may provide some intuition for a signal
processing view of the ghost.

We may write the following equally valid reformulations of the stabilized inverse filter:

Pup =
G∗p

|Gp|2 + ε
P (A-1)

= P − Gp|r0|
|Gp|2 + ε

P

︸ ︷︷ ︸
Pdown

(A-2)

=
1

2




(
G∗p

|Gp|2 + ε

)
P

︸ ︷︷ ︸
Pup

+P −
(

Gp|r0|
|Gp|2 + ε

)
P

︸ ︷︷ ︸
Pdown


 (A-3)

=
1

2

(
P +

1− |r0|+ |r0|2e−2πift∆ − |r0|e+2πift∆

|Gp|2 + ε
P

)
(A-4)

The SSAD (Rickett et al., 2014) formulation uses the style of Equation (A-3), because the
up- and downgoing waves are potentially ‘too’ sparse and therefore lose small portions of
the signal. By combining the sparse results with the input data, we regain the original S/N
characteristics of the signal. Note how Equation (A-4) resembles the PZSUM formulation.
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t
Pup

t
Gp = δ(t)− δ(t− t∆)

t
Pup ∗Gp

t
G∗p = δ(t)− δ(t+ t∆)

t
P1 = 1

2(Pup ∗Gp) ∗G∗p

t
P∞

|P̂up| arg(P̂up)

×
|Ĝp| arg(Ĝp)

=
|P̂upĜp| arg(P̂upĜp)

×
|Ĝ∗p| arg(Ĝ∗p)

=|P̂1| arg(P̂1)

÷
|Ĝp|2 arg(|Ĝp|2)

=

|P̂∞| arg(|P̂∞|)

Impulse response (time domain) Impulse response (frequency domain)

G
h

o
st

fi
lt

e
r

In
v
e
rs

e
fi

lt
e
r

Multiplication with conjugate ghost restores zero phase, but leaves wrong amplitudes

Amplitudes restored except at notchesRinging with notch period

Figure A-1: An impulse response illustration of the forward and inverse ghost filter. The result-
ing approximation of the upgoing wavefield, P∞, can be considered as a weighted
repeated application of GG∗ (which preserves zero phase) to the initial filter. This
preserves the impulse, but copies its own ghost artefacts over the entire trace.
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A-2 Complex frequency technique

The complex frequency technique is given in Mallick & Frazer (1987). We use it to regularize
divisions by a complex pole. We write P = Pe−ateat, and do the processing on only the
portion Pe−at. The Fourier transform is as follows:

P̂ e−at(f) =

∫ ∞

−∞
Pe−ate−2πift dt, (A-5)

=

∫ ∞

−∞
Pe−2πi(f− ai

2π )t dt. (A-6)

Such that we have a complex frequency f̂ = f − ai
2π and must adapt our filters to also use f̂

rather than f .

A-3 Mirror-sum & Posthumus

Although the literature presents the Mirror-Sum as a method separate from that proposed by
Posthumus (1993), their mathematical description is very similar. Take the following situation





Ẑ = ρvpV̂z
Ĝp = 1− e−2πift∆

Ĝ∗z =
vpkz
ω

(
1 + e−2πift∆

) (A-7)

The mirror-sum can be rewritten as shown below.

P̂ms =
1

2

(
P̂up − P̂downe

−2πift∆
)

(A-8)

=
1

2

(
1

2

(
P̂ +

ω

vpkz
Ẑ

)
− 1

2

(
P̂ − ρω

vpkz
Ẑ

)
e2πift∆

)
(A-9)

=
1

4




(
1− e2πift∆

)

︸ ︷︷ ︸
Ĝ∗p

P̂ +
(

1 + e2πift∆
) ω

vpkz︸ ︷︷ ︸
ω2

v2
pk

2
z
Ĝ∗z

Ẑ




(A-10)

i.e. it is a ‘dephase and sum’ method: dephasing the downgoing wave and adding it to the
upgoing wave, with the two components being weighed individually.

Posthumus’ solution is:

P̂ph =
Ĝ∗pP̂ + Ĝ∗zẐ∣∣∣Ĝp
∣∣∣
2

+
∣∣∣Ĝz
∣∣∣
2 =

Ĝ∗pP̂ + Ĝ∗zẐ

4
(

sin2(ft∆π) +
k2
zv

2
p

ω2 cos2(ft∆π)
) . (A-11)

This method thus has the same ‘dephase and sum’ properties, however using a different
denominator to scale the amplitudes on both signals simultaneously.
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The two expressions are equal for vertical incidence (kx = ky = 0, kz = ω
vp

). Posthumus

(1993) shows that his method manages to correctly weigh the amplitudes after applying the
conjugate ghosts, while the mirror-sum does not. It should be noted that Posthumus’ method
is however more sensitive to using the correct ghost delay compared to the mirror-sum: an
incorrect ghost model causes the appearance of ringing all over the trace, while this is less
apparent for the mirror-sum method (Posthumus, 1993; Day et al., 2013).

A-4 Least squares solution

Assuming no noise, the deghosting problem with multisensor measurements is overdetermined:
there is a single unknown (the upgoing wavefield) for multiple measurements. However – the
model has its own unknowns. Moreover, in the presence of noise the system of equations is
inconsistent (it has no exact solution). Finding the correct solution for both the noise-free
and noisy case may be found by least squares minimization. The ‘ordinary least squares’
solution for the system Ax = b comes from the problem:

min
x
‖Ax− b‖ , (A-12)

the solution of which is found as
x = (A∗A)−1A∗b (A-13)

with ∗ indicating the complex conjugate transpose, and provided that (A∗A)−1 exists.

The reasoning is as follows, assume that a wrong trial solution x introduces errors e in the
data, i.e. b = Axwrong + e. We want to minimize (‘least’) the dot product (‘squares’) of the
errors:

J = e∗e = (b−Ax)∗ (b−Ax) , (A-14)

= b∗b− x∗A∗b− b∗Ax+ x∗A∗Ax. (A-15)

We find the minimum by taking the derivative of this cost function J :

∂J

∂x
= −2b∗A+ 2x∗A∗A, (A-16)

which we set to 0 and solve for x

x = (A∗A)−1A∗b. (A-17)

A-4-1 Posthumus

The solution by Posthumus (1993) can clearly be recognized in the above system, where we
want to achieve:

min
Pup(f)

∥∥∥∥
(
ĜP
ĜZ

)
P̂up −

(
P̂data

V̂zdata

)∥∥∥∥ , (A-18)

and opt for the solution:

P̂up(f) =
Ĝ∗pP̂data + Ĝ∗zV̂z,data∣∣∣Ĝp

∣∣∣
2

+
∣∣∣Ĝz
∣∣∣
2 . (A-19)
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A-4-2 Optimal Deghosting (ODG)

We can enhance the cost function to minimize the errors based on the knowledge we have on
the noise covariance (i.e., if a certain measurement is very noisy, we allow a bigger magnitude
error). The system is m (measurements) equals HPup (ghost model times upgoing wavefield)
plus N (noise). Using the noise covariance C = N∗N as the error sensitivity, we obtain:

J = eC−1e = (m−HPup)∗C−1 (m−HPup) , (A-20)

= m∗C−1m− P ∗upH
∗C−1m−m∗C−1HPup + P ∗upH

∗C−1HPup. (A-21)

Take the derivative of this function, and equate to 0 to find the minimum:

∂J

∂Pup
= −2m∗C−1H + 2P ∗upH

∗C−1H = 0, (A-22)

leading to the solution:

Pup = (H∗C−1H)−1H∗C−1m. (A-23)

In case of uncorrelated noise, the covariance only has diagonal entries with the variances of
the measurement noise, diag(C) =

(
σ2
p , σ

2
z

)
. This simplifies the equation to:

Pup =

HpP
σ2
p

+ HzVz
σ2
z

H∗pHp
σ2
p

+ H∗zHz
σ2
z

(A-24)

A-4-3 Robust optimal deghosting (RODG)

Kamil & Caprioli (2014) show that the cost function can be simplified with not the noise
covariance but the data covariance R = mm∗ = hh∗Pup + N = σ2

UHH
∗ + C, with σ2

u the
spectrum of the upgoing wave, and H the true ghost model,

HR−1 =
H∗C−1

1 +H∗C−1Hσ2
u

. (A-25)

Substitution of H∗C−1 with H∗R−1 = H∗C−1

1+σ2
uH
∗C−1H

gives

Pup =
H∗C−1

H∗C−1H
m =

H∗C−1

1 + σ2
uH
∗C−1H

× 1 + σ2
uH
∗C−1H

H∗C−1H
m =

H∗R−1

H∗R−1H
m. (A-26)

This means that we can replace the noise covariance matrix with the data covariance matrix.
In case of incoherent noise, this means: Then the approximate solution to the system is:

Pup =

H∗pP

|P |2 + H∗zVz
|Vz |2

H∗pHp
|P |2 + H∗zHz

|Vz |2
. (A-27)
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A-4-4 Cross ghost cost function

Taking a look back at the cost function, we can eliminate Pup from the cost function, using
the ODG result:

J = m∗C−1m− P ∗upH
∗C−1m−m∗C−1HPup + P ∗upH

∗C−1HPup, (A-28)

= m∗C−1m−
(
(H∗C−1H)−1H∗C−1m

)∗
H∗C−1m−m∗C−1H(H∗C−1H)−1H∗C−1m

+
(
(H∗C−1H)−1H∗C−1m

)∗
H∗C−1H(H∗C−1H)−1H∗C−1m,

(A-29)

= m∗C−1m− 2
|m∗C−1H|2
H∗C−1H

+
m∗C−1H

H∗C−1H
H∗C−1H

H∗C−1m

H∗C−1H
, (A-30)

= m∗C−1m− |m
∗C−1H|2

H∗C−1H
. (A-31)

Assume that C only has elements on the diagonal, with diag(C) =
(
σ2
p , σ

2
z

)
the noise co-

variances, then expanding the system gives:

J =
|P |2
σ2
p

+
|Vz|2
σ2
z

−

∣∣∣P
∗Gp
σ2
p

+ V ∗z Gz
σ2
z

∣∣∣
2

|Gp|2
σ2
p

+ |Gz |2
σ2
z

, (A-32)

=
|P |2
σ2
p

+
|Vz|2
σ2
z

−
|P |2|Gp|2

σ4
p

+ |Vz |2|Gz |2
σ4
z

+
P ∗GpVzG∗z

σ2
pσ

2
z

+
V ∗z GzPG

∗
p

σ2
pσ

2
z

|Gp|2
σ2
p

+ |Gz |2
σ2
z

, (A-33)

=

|P |2
σ2
p

(
|Gp|2
σ2
p

+ |Gz |2
σ2
z

)
+ |Vz |2

σ2
z

(
|Gp|2
σ2
p

+ |Gz |2
σ2
z

)

|Gp|2
σ2
p

+ |Gz |2
σ2
z

−
|P |2|Gp|2

σ4
p

+ |Vz |2|Gz |2
σ4
z

+
P ∗GpVzG∗z

σ2
pσ

2
z

+
V ∗z GzPG

∗
p

σ2
pσ

2
z

|Gp|2
σ2
p

+ |Gz |2
σ2
z

,

(A-34)

=

|P |2|Gz |2+|Vz |2|Gp|2−P ∗GpVzG∗z−V ∗z GzPG∗p
σ2
pσ

2
z

|Gp|2
σ2
p

+ |Gz |2
σ2
z

, (A-35)

=

(GzP−GpVz)(P ∗G∗z−V ∗z G∗p)
σ2
pσ

2
z

|Gp|2
σ2
p

+ |Gz |2
σ2
z

, (A-36)

=

|GzP−GpVz |2
σ2
pσ

2
z

|Gp|2
σ2
p

+ |Gz |2
σ2
z

. (A-37)

The function may be extended to more components, giving Equation (4-6).

A-5 Sensitivity analysis of the cross ghost

The following section analyzes the cross ghost function (Equation (4-9)) by adding one variable
at a time, showing the upper bound of the cost function.
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A-5-1 Unknown time delay

Consider we know p′z = pz and |r′0| = |r0|. The cost function would reduce to:

J(t′∆) =

∥∥∥∥2
pz|r0|
ρ

(
e−2πift′∆ − e−2πift∆

)
P̂up

∥∥∥∥
2

2

. (A-38)

Say t′∆ = t∆ + ∆t∆, with ∆t∆ describing the deviation from the true ghost delay in the data.
the cost function can be simplified towards:

J(∆t∆) =

∥∥∥∥
(

2
pz|r0|
ρ

)(
e−2πift∆

)(
e−2πif∆t∆ − 1

)
P̂up

∥∥∥∥
2

2

, (A-39)

≤
∥∥∥
(
e−2πif∆t∆ − 1

)∥∥∥
2

∥∥∥∥2
pz|r0|
ρ

e−2πift∆P̂up

∥∥∥∥
2

2︸ ︷︷ ︸
constant

, (A-40)

≤
∥∥∥
(
e−2πif∆t∆ − 1

)∥∥∥
2

∥∥∥∥2
pz|r0|
ρ

P̂up

∥∥∥∥
2

2

. (A-41)

Where we made use of the Cauchy-Schwartz theorem for the inequality in the L2 norm, and
realise that the L2 norm of a complex exponential equals 1. We can now derive an upper
bound to the cost function. We can observe that the last term is constant, and varying ∆t∆
is the only effect on the cost function. We may write down the L2 norm of this varying part:

∥∥∥
(
e−2πif∆t∆ − 1

)∥∥∥
2

=

∫ fmax

fmin

∣∣∣e−2πif∆t∆ − 1
∣∣∣
2

df, (A-42)

=

∫ fmax

fmin

(
2− (e−2πif∆t∆ + e2πif∆t∆)

)
df, (A-43)

=

∫ fmax

fmin

(
2− 2 cos(2πf∆t∆)

)
df, (A-44)

= 2 (fmax − fmin) +
sin(2πfmin∆t∆)

π∆t∆
− sin(2πfmax∆t∆)

π∆t∆
(A-45)

We can plot this function for varying fmax and as a function of ∆t∆ (Figure A-2). We observe:

1. We know limx→0
sin(aπt)
πt = a. The function derived here thus evaluates to 0 for ∆t∆ → 0,

as the sinc functions simplify to 2(fmin − fmax). The entire cost function will thus be
0 in case the correct time delay is tested (as we consider an upper bound). This is
irregardless of the signal bandwidth. The limitations of the single component cost
function (multiple peaks, and an minimum estimation limit) are thus completely gone.

2. Although the sinc term is ringy, we know it will ‘die out’ quickly and have little impact,
leaving us with the constant first term 2 (fmax − fmin). As a proxy for this ‘dying out’,
take the first zero crossing of the sinc function, found at ∆t∆ = 1

2(fmax+fmin) . Increasing
fmax thus linearly pushes the baseline cost away from 0 for wrong time delays, and
additionally causes the sensitivity to increase by narrowing the sinc function around
∆t∆ = 0. (Figure would help here!!). In practice, the sensitivity is limited to the signal
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Figure A-2: The varying upper bound of the L2 norm (Equation (A-45)), which is minimum
at the correct time delay, and varies otherwise. Increasing the maximum frequency
(legend) in the signal narrows the cost function around ∆t∆ = 0. The log plot
suggests that, for visual purposes, the inverse of the cost function J−1 will appear
more striking and show the order of magnitude difference clearly.
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bandwidth, so we will observe that the cost function is maximum everywhere, except
for the range (− 1

2fmax
, . . . , 0, . . . , 1

2fmax
). For a signal bandwidth of fmax = 150 Hz,

this means the cost function will be around 300 everywhere, except for ± 1
300 = ±3 ms

around the true delay, where the cost function dives to 0.

To sum up: in case only the time delay is unknown, we can derive an upper bound for the
cost function. This upper bound equals 0 for the true delay and is sensitive for approximately

1
2fmax

seconds around it. The upper bound is ‘large’ otherwise.

A-5-2 Unknown reflection coefficient

Now say both |r′0| = |r0|+ ∆|r0| and t′∆ = t∆ + ∆t∆ as the varying quantities:

J(∆t∆,∆r0) =

∥∥∥∥
(

2pz
ρ

)(
(|r0|+ ∆|r0|)e−2πif(t∆+∆t∆) − |r0|e−2πift∆

)
P̂up

∥∥∥∥
2

2

. (A-46)

We may expand:

J(∆t∆,∆r0) =

∥∥∥∥
(

2pz
ρ

)(
(|r0|+ ∆|r0|) e−2πift∆e−2πif∆t∆ − |r0|e−2πift∆

)
P̂up

∥∥∥∥
2

2

, (A-47)

=

∥∥∥∥
(

2pz|r0|
ρ

)(
e−2πift∆

)(
(1 +

∆|r0|
|r0|

)e−2πif∆t∆ − 1
)
P̂up

∥∥∥∥
2

2

, (A-48)

≤
∥∥∥∥
(

(1 +
∆|r0|
|r0|

)e−2πif∆t∆ − 1
)∥∥∥∥

2

2

∥∥∥∥
(

2pz|r0|
ρ

)
P̂up

∥∥∥∥
2

2︸ ︷︷ ︸
constant

. (A-49)

We can evaluate this upper bound to find a combined cost function

∥∥∥∥
(

(1 +
∆|r0|
|r0|

)e−2πif∆t∆ − 1
)∥∥∥∥

2

2

=

∫ fmax

fmin

∣∣∣(1 +
∆|r0|
|r0|

)e−2πif∆t∆ − 1
∣∣∣
2

df, (A-50)

= 2

(
1 +

∆|r0|
|r0

+
∆|r0|2
2|r0|2

)
(fmax − fmin)+

(
1 +

∆|r0|
|r0

)(
sin(2πfmin∆t∆)

π∆t∆
− sin(2πfmax∆t∆)

π∆t∆

)

(A-51)

Observe the close relation to the previously derived function for just ∆t∆. We can observe:

1. If ∆t∆ = 0 (i.e. the right time delay is found), the remaining term is ∆|r0|2
|r0|2 (fmax−fmin)

describing the sensitivity to the correct ghost delay. Assuming the error in reflection
coefficient will be approximately 5% or les, the upper bound for the norm is approxi-
mately 0.052(fmax − fmin) = 0.0025(fmax − fmin). The order of magnitude of this cost
bound is relatively small compared to that observed for the time delay which cycles
around 2(fmax − fmin).
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2. Increasing ∆t∆ makes the sinc terms go towards 0, such that the majority of the cost

function is contributed by the first term. The term
(

1 + ∆|r0|
|r0 + ∆|r0|2

2|r0|2
)

is to first ap-

proximation equal to 1, and to second approximation equal to 1 + ∆|r0|
|r0| . The important

consequence of this is that when we are ‘far away’ from the correct ∆t∆, the upper
bound of the cost function is linear with respect to ∆|r0|, i.e., does not have a minimum
at the correct ∆|r0| at all! We can take away from this that we can and must search
for the correct ∆t∆ before starting to search the correct reflection coefficient. In the
‘meantime’ we can choose an approximate reflection coefficient, e.g. |r0| = 0.95.

Figure A-3: Evaluating the upper bound of the L2 norm of J(∆t∆,∆|r0|), while varying both
the reflection coefficient and the time delay around the true (desired) values. Its
clear that the time delay has the biggest importance. Only when ∆t∆ → 0, we see
the quadratic term in the bound become important. This motivates how we must
focus on finding the correct time delay initially. Notice how the brightest yellow
increases from ∆|r0| = −0.05 to ∆|r0| = 0.05, showing the linear term in the cost
function for larger ∆t∆.
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A-5-3 Unknown incidence angle

Lastly, varying p′z = pz + ∆pz allows us to finish the analysis. We can find an upper bound:

J(∆t∆,∆pz) =

∥∥∥∥∥
(

∆pz

(
1− |r0|(|r0|+ ∆|r0|)e−2πif(2t∆+∆t∆)

)

+ (2pz + ∆pz)
(

(|r0|+ ∆|r0|)e−2πif(t∆+∆t∆) − |r0|e−2πift∆
)) P̂up

ρ

∥∥∥∥∥

2

2

,

(A-52)

≤
∥∥∥∥∥

∆pz
2pz

( 1

|r0|
e2πift∆ − (|r0|+ ∆|r0|)e−2πif(t∆+∆t∆)

+
( 2pz

∆pz
+ 1
)(

(1 +
∆|r0|
|r0|

)e−2πif∆t∆ − 1

))∥∥∥∥∥

2

2

∥∥∥∥∥
2pz|r0|
ρ

P̂up

∥∥∥∥∥

2

2

,

(A-53)
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Evaluating this norm is not particularly straightforward, but still insightful.
∥∥∥∥∥

∆pz
2pz

( 1

|r0|
e2πift∆ − (|r0|+ ∆|r0|)e−2πif(t∆+∆t∆) +

( 2pz
∆pz

+ 1
)(

(1 +
∆|r0|
|r0|

)e−2πif∆t∆ − 1

))∥∥∥∥∥

2

2

(A-54)

=

∫ fmax

fmin

(
∆p2

z

4p2
z

(
2 + |r0|2 + ∆|r0|2 + 2∆|r0||r0|+

1 + ∆|r0|2
|r0|2

+
2∆|r0|
|r0

)

+
∆pz
pz

(
2 +

2∆|r0|
|r0|

+
∆|r0|2
|r0|

)
+

4pz
∆p2

z

(
2 +

2∆|r0|
|r0|

+
∆|r0|2
|r0|

))
df

+

∫ fmax
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We can make a simplifying choice that r0 = 1 and ∆|r0| = 0, which has a relatively small
effect on the overall value.
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) )

(A-57)

The first line of this cost function bears close resemblance to the upper bound of the reflection
coefficient cost function (Equation (A-51)). Ignoring other lines, the correct time delay ∆t∆ =

0 cancels all terms except the quadratic part ∆p2
z

2p2
z

. The cost function however depends on five

additional sinc functions. Recall that the sinc function is only of significant value when
the argument is small, approximately less than ±π. These sinc functions thus only become
important when t∆ is small. The cross ghost was evaluated for varying pz and ∆t∆ in Figure
A-4, showing that for a pz that is 25% too small, and a time delay lower than 5 ms, the
combination of the two errors particularly broadens the cost function. The function looks
somewhat like the function we could expect above, strengthening some belief that the upper
bound is a good approximation of the cost function.
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96 Derivations

Figure A-4: Numerical evaluation of the cross ghost cost function for varying ∆t∆ and pz, using
a 40 Hz central frequency Ricker wavelet, a nominal pz = 0.5 and a ghost delay of
10 ms. We observe additional minima forming for ∆pz ≤ 0 at t∆ + ∆t∆ = 0 and
t∆ + 2∆t∆ – both terms are present in the derived cost function.
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Appendix B

Additional images

B-1 Full deghosted shots

B-1-1 Real data 1
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Figure B-1: Full original and deghosted shot for PYZSUM for real data set 1, with gain of t
applied.
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Figure B-2: Full original and deghosted shot for the 3 component cross ghost adaptive deghosting
for real data set 1, with gain of t applied.
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B-1-2 Real data 2
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Figure B-3: Full original and deghosted shot for PYZSUM for real data set 2, with gain of t
applied.
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Figure B-4: Full original and deghosted shot for PYZSUM for real data set 2, with gain of t
applied.
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B-2 Cost functions at other time delays
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Figure B-5: The cost functions at a time delay of 25 ms, with a maximum frequency of 100 Hz.
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Figure B-6: The cost functions at a time delay of 5 ms, with a maximum frequency of 100 Hz.
Clearly, the energy minimization has reached its estimation limit and is not useful.
The 2C energy minimization just barely has a peak at the right point, but this is its
estimation limit too.
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