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Abstract 

 
We present a review of the recent development in finite-difference time-domain 
modeling of seismic wave propagation and earthquake motion. The finite-difference 
method is a robust numerical method applicable to structurally complex media. Due to 
its relative accuracy and computational efficiency it is the dominant method in 
modeling earthquake motion and it also is becoming increasingly more important in the 
seismic industry and for structural modeling. We first introduce basic formulations and 
properties of the finite-difference schemes including promising recent advances. Then 
we address important topics as material discontinuities, realistic attenuation, anisotropy, 
the planar free surface boundary condition, free-surface topography, wavefield 
excitation (including earthquake source dynamics), nonreflecting boundaries, and 
memory optimization and parallelization. 
 
Key words: anisotropy, attenuation, earthquake motion, earthquake source dynamics, 
finite-difference method, free surface, nonreflecting boundaries, numerical modeling, 
optimally accurate operators, seismic waves 
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Introduction 
 

Faithfully synthesizing observed seismic data requires simulation of seismic wave 
propagation in realistic computational models which can include anisotropic media, 
nonplanar interfaces between layers and blocks, velocity/density/quality-factor 
gradients inside layers, and often with free-surface topography. In particular, the 
rheology of the medium should allow for realistic attenuation. Anisotropy increasingly 
becomes more important particularly in structural studies and is essential in many 
applications in seismic exploration. The modeling of large earthquakes requires at least 
kinematic modeling of the rupture propagation but the dynamic modeling is likely to 
provide more realistic simulations in the near future. Since analytical methods do not 
provide solutions for realistic (structurally complex) models, approximate methods are 
necessary. Among them, the finite-difference (FD) method is still the dominant method 
in modeling earthquake motion and it also is becoming increasingly more important in 
the seismic industry and structural modeling. This is because the FD method can handle 
relatively complex models, provides the „complete“ solution as waves interact with the 
model, can be relatively accurate, and, at the same time, relatively computationally 
efficient. In addition to this, the FD method can be relatively easily parallelized. It is 
important to stress the word relatively - this chapter should explain why. 

In the FD method, a computational domain is covered by a space-time grid, that is, 
by a set of discrete grid positions in space and time. The functions describing a 
wavefield as well as those describing material properties of the medium are represented 
by their values at the grid positions. In principle, the space-time grid may be arbitrary 
and usually no assumption is made about the function values in-between the grid 
points. Spatial and time derivatives of a function at a given grid position are 
approximated by the so-called FD formulae, the derivative being expressed using the 
function values at a specified set of the grid positions in a neighborhood of the given 
position. The original differential equation is thus replaced by a system of algebraic 
(FD) equations. The system of FD equations and their numerical solution have three 
basic properties – consistency of the FD equations with the original differential 
equations, stability and convergence of the numerical solution. These properties have to 
be analyzed prior to the numerical calculation. 

In principle, the FD method can be applied either in the time or frequency domain. 
While for the forward modeling the time-domain formulation requires less calculations 
(at least for simple simulations), the frequency-domain formulation may be more 
efficient in inverse problems when simulations for multiple source locations are 
required, at least in 2D (Pratt, 1990; Pratt et al., 1998). As most of the FD applications 
to date focus on the forward modeling, this chapter only addresses the FD time-domain 
(FDTD) formulation. 

The FD method belongs to the domain methods together with, for example, the 
finite-element, spectral element or the pseudospectral method (Chaljub et al. 2006). 
Therefore, in general, it is less accurate than boundary methods but much more efficient 
when applied to complex models (for comparison see, e.g., Takenaka et al., 1998). 

Because, formally, the FD method almost always can provide some numerical 
results, those who are not familiar with the properties of the FD method and particularly 
with its inherent limitations, sometimes overestimate the capability and accuracy of the 
FD method, and especially some simple, user-friendly looking FD schemes and codes. 
An improper application of the FD method can give very inaccurate results. On the 
other hand, when properly treated, the FD method shows accuracy similar to that of 
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other full waveform techniques, and can be a strong modeling tool applicable to many 
important problems of recent seismology and seismic prospecting. 

In this chapter we try to provide a limited review of the recent progress in FDTD 
modeling of seismic wave propagation and earthquake motion as well as partial tutorial 
describing in detail specific FDTD techniques that can be used to solve real practical 
problems. Because explicit, heterogeneous, staggered-grid FD schemes clearly have 
dominated in the recent FDTD modeling we focus on them.   

In the following subsections we briefly introduce basic concepts and properties of 
the FD method, some of them directly in relation to solving the elastodynamic equation. 
A more detailed introduction to the FD method would require considerably large space. 
Basics of the FD method can be found in applied mathematical textbooks such as, for 
example, Forsythe and Wasow (1960), Isaacson and Keller (1966), Richtmyer and 
Morton (1967), Marchuk (1982), Anderson et al. (1984), Mitchell and Griffiths (1994), 
Morton and Mayers (1994), Durran (1999), Cohen (2002). Detailed introductory texts 
on the application of the FD method to seismic wave propagation and seismic motion 
modeling can be found in Boore (1972), Levander (1989), Moczo (1998), Carcione et 
al. (2002), and Moczo et al. (2004b). Though focused on the computational 
electrodynamics, the extensive book of Taflove and Hagness (2005) is a good reference 
to the application of the FDTD method to partial differential equations in physics. 
 
 

The Grid 
 
Consider a Cartesian coordinate system (x, y, z)  and a computational domain in the 
four-dimensional space of variables (x, y, z, t) with t meaning time. Consider a set of 
discrete points ( , , , )I J K mx y z t  given by 0Ix x I xΔ= + , 0Jy y J yΔ= + , 

0Kz z K zΔ= + ,   0mt t m tΔ= + ;  , , , 0, 1, 2,I J K m = …. The spatial increments xΔ , 
yΔ  and zΔ are usually referred to grid spacings, while tΔ  is the time step. The set of 

points (positions) defines a space-time grid.  In many applications, the regular 
(uniform) rectangular grid with the grid spacings x y z hΔ Δ Δ= = =  is a natural and 
reasonable choice. The value of a function u at a grid position ( , , , )I J K mx y z t , that is 

( ), , ,u I J K m  or , ,
m
I J Ku , is approximated by a grid function , , ( , , , )m

I J K I J K mU U x y z t= . 
Depending on the particular problem, other than Cartesian coordinate systems can 

be used to define a grid. For instance, spherical coordinates can be used for the whole 
Earth’s models, and cylindrical for modeling boreholes. The choice of the grid 
determines the structure and properties of the FD approximations to derivatives and 
consequently the properties of the FD equations. Here we focus on FD schemes 
constructed for grids corresponding to the Cartesian coordinate systems. 

In some problems it may be advantageous to define a non-uniform grid. Examples 
are grids with irregularly varying size of the grid spacing or discontinuous (combined) 
grids with a sudden change in size of the grid spacing. Such grids can better 
accommodate geometry of the model or reduce the total number of grid points covering 
the computational space. These grids belong to the structured grids: at a grid point the 
neighbor grid points are always known (for example, they are defined using some 
mathematical rule). On the other hand, at a grid point of the unstructured grid some 
additional information is needed about the neighbor grid points. Most FD techniques 
use structured grids because the algorithms are faster than those on the unstructured 
grids. 
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Another and perhaps more important aspect is whether all functions are 
approximated at the same grid position or not. In a conventional grid, all functions are 
approximated at the same grid positions. In a partly-staggered grid, displacement or 
particle-velocity components are located at one grid position whereas the stress-tensor 
components are located at another grid position. In a staggered grid, each displacement 
and/or particle-velocity component and each shear stress-tensor component has its own 
grid position. The normal stress-tensor components share another grid position. The 
staggered distribution of quantities in space is related (through the equation of motion) 
to the staggered distribution of quantities in time. In all types of grids, an effective 
density is assigned to a grid position of each displacement or particle-velocity 
component while an effective elastic modulus is assigned to each grid position of the 
stress-tensor components. The so-called grid cells of the conventional, partly-staggered 
and staggered grids are illustrated in Fig. 1. 
 

 
 
 
Figure 1.  Spatial grid cells in the conventional, partly-staggered and staggered grids. 

All displacement-vector components U, V and W are located at each grid 
position in the conventional grid. Either displacement or particle-velocity 
components U, V and W share the same grid positions whereas stress-tensor 
components Txx, Tyy, Tzz, Txy, Tyz, and Tzx share other grid positions in the 
partly-staggered grid. Displacement and/or particle-velocity components U, 
V and W are located at different grid positions as well as stress-tensor 
components Txx, Tyy, Tzz, Txy, Tyz, and Tzx are in the staggered grid. Because 
the normal stress-tensor components are determined by the same spatial 
derivatives of the displacement components, they share one grid position. 

 

geofpemo
Line
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The FD Approximations to Derivatives 
 
Let the function ( )xΦ  have a continuous first derivative. The forward-difference 
formula 
 

   ( ) ( ) ( )0 0
0

d
d

x h x
x

x h
Φ ΦΦ + −

=�  , (1) 

 
the backward-difference formula 
 

  ( ) ( ) ( )0 0
0

d
d

x x h
x

x h
Φ ΦΦ − −

=�  , (2) 

 
and the central-difference formula 
 

 ( ) ( ) ( )0 0
0

d
d 2

x h x h
x

x h
Φ ΦΦ + − −

=�  (3) 

 
are three different approximations to the 1st derivative of function ( )0xΦ . Substituting 

Taylor expansions of functional values ( )0x hΦ +  and ( )0x hΦ −  about the point 0x  in 
eqs. (1) and (2) shows that the difference between the first derivative and the value of 
the right-hand side expression, that is, the truncation error, has the leading term 
proportional to 1h . The FD formulae  (1) and (2) are the 1st -order approximations to 
the first derivative. Similarly, it is easy to check that the FD formula (3) is the 2nd-order 
approximation to the first derivative because the truncation error is proportional to 2h . 
For a chosen derivative, set of the grid points and order of approximation, it is possible 
to find a FD formula by constructing a system of algebraic equations based on Taylor 
expansions and equating the coefficients of identical powers of the grid spacing h (e.g., 
Durran, 1999; Moczo et al., 2004b). This is also true for approximating a derivative in a 
plane or in a volume. 

A frequently used 2nd-order approximation to the second derivative is 
 

     ( ) ( ) ( ) ( )2
0 0 0

02 2
2d

d
x h x x h

x
x h

Φ Φ ΦΦ − − + +
=�  . (4) 

The approximation is used in the conventional-grid displacement FD schemes. 
An important 4th-order approximation to the 1st derivative is 

 

 ( )0 0 0 0 0
d 1 3 3 1 1
d 2 2 2 2

x a x h x h b x h x h
x h
Φ

Φ Φ Φ Φ
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎢ ⎥ ⎢ ⎥= + − − + + − −⎟ ⎟ ⎟ ⎟⎨ ⎬⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎢ ⎥ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

�  (5) 

 
with 1 24a=− , 9 8b= . The approximation is used in the staggered-grid FD 
schemes. 

For other FD approximations, higher-order FD approximations and FD 
approximations on arbitrary spaced grids see also Anderson et al. (1984), Dablain 
(1986), Fornberg (1988), Geller and Takeuchi (1995, 1998), Klimeš (1996), and Cohen 
(2002).  
 



 9

Basic Properties of the FD Equations and their Solution 
 
Denote a partial differential equation as PDE and a FD equation(s) as FDE (a FD 
scheme may be used instead of FDE). A FDE is consistent with the PDE if the 
difference between the FDE and the PDE (the truncation error) vanishes as the sizes of 
the time step and spatial grid spacing go to zero independently, that is,  

0PDE FDE− →   if  Δ 0, 0t h→ →  . If this is true only when a certain relationship 
is satisfied between tΔ  and h, the FDE is conditionally consistent. 

A FDE is stable if it produces a bounded solution when the exact solution is 
bounded, and is unstable if it produces an unbounded solution when the exact solution 
is bounded. If the solution of the FDE is bounded for all values of tΔ  and h, the FDE is 
unconditionally stable.  If the solution of the FDE is bounded only for certain values of 

tΔ  and h, the FDE is conditionally stable. If the solution of the FDE is unbounded for 
all values of tΔ  and h, the FDE is unconditionally unstable. The stability analysis can 
be performed only for linear PDE. A nonlinear PDE must be first linearized locally. 
The FDE of the linearized PDE can be analyzed for stability. The most commonly used 
method for the stability analysis is the von Neumann method. The basic idea of the von 
Neumann method is to represent a discrete solution at a time Δm t  and spatial point I h , 
that is at one grid point, by a finite Fourier series, and examine stability of the 
individual Fourier components. Thus, the method investigates the local stability. The 
discrete solution is stable if and only if each Fourier component is stable. Von 
Neumann analysis is applicable to linear FDE with constant coefficients. Though a 
spatial periodicity is assumed for the finite Fourier series, the analysis can give a useful 
result even if this is not the case. 

A FDE is convergent if the solution of the FDE approaches the exact solution of the 
PDE as the sizes of the time step and spatial grid spacing go to zero. Denoting the 
solutions obtained by the PDE and FDE as , ,

m
I J Ku  and , ,

m
I J KU , respectively, the 

convergence means that , , , ,
m m
I J K I J KU u→     if     Δ 0, 0t h→ →  . 

Whereas the consistency is the property of the FDE because it relates the FDE to 
the PDE, stability and convergence are properties of the numerical solution of the FDE.  
In general, while it is easy to analyze the consistency, proving convergence can be a 
very difficult mathematical problem. Therefore, it is very helpful that the convergence 
is related to the consistency and the stability: It follows from the Lax equivalence 
theorem that if the FDE is consistent and stable, it is also convergent. 

Due to the discrete nature of the FD solution, the phase and group velocity in the 
grid differ from the true velocities in the medium. The grid velocities depend on the 
spatial sampling ratio s h λ= , where λ  is the wavelength that is to be propagated in 
the grid, and also on Courant number c t hΔ , where c is the velocity. The grid 
dispersion is a very important grid phenomenon. It has a cumulative effect on the wave 
propagation – the longer the travel distance, the larger the effect of the difference 
between the grid and true velocity. Therefore, the grid dispersion has to be analyzed 
prior to the numerical calculations. This is especially important if the medium is 
viscoelastic. The viscoelastic medium is intrinsically dispersive and thus a possible 
superposition of two dispersion effects has to be prevented by minimizing the grid 
dispersion; see Robertsson et al. (1994). The grid-dispersion relation can be obtained 
from the stability analysis. The grid dispersion has to be taken into account in planning 
the numerical calculation. For a detailed analysis of stability, grid dispersion and 
accuracy of the FD schemes solving the equation of motion on the conventional and 



 10

staggered-grid schemes in 2D and 3D problems in homogeneous media see, for 
example, papers by Marfurt (1984), Crase et al. (1992), Igel et al. (1995), Geller and 
Takeuchi (1995, 1998), Klimeš (1996), Takeuchi and Geller (2000), Mizutani et al. 
(2000), Moczo et al. (2000). 
 
 

Explicit and Implicit FD Schemes 
 
In an explicit scheme, the motion at any (one) spatial grid point can be updated for the 
next time level using an explicit FD formula which uses only values of motion at 
previous time levels (and, obviously, using also material grid parameters). In the case of 
an implicit scheme, there is no explicit formula for updating motion only in one grid 
point. In an implicit scheme, the motion at a given time level is calculated 
simultaneously at all spatial grid points from the motion values at previous time levels 
using the inverse of a matrix. Obviously, the explicit schemes are computationally 
simpler. A vast majority of earthquake ground motion modeling and exploration 
seismology studies use explicit FD schemes. For the implicit schemes see, e.g., 
Emerman et al. (1982), Mufti (1985). 
 
 

Homogeneous and Heterogeneous FD Schemes 
 
Motion in a smoothly heterogeneous elastic or viscoelastic continuum is governed by 
the equation of motion. The equation can be solved using a proper FD scheme. If the 
medium contains a material discontinuity, i.e., an interface between two homogeneous 
or smoothly heterogeneous media, at which density and elastic moduli change 
discontinuously, the equation of motion still governs motion away from the 
discontinuity but boundary conditions apply at the discontinuity. There are two 
approaches to deal with this situation – the homogeneous and heterogeneous 
approaches. In the homogeneous approach, a FD scheme for the smoothly 
heterogeneous medium is applied at grid points away from the material discontinuity 
while a FD scheme obtained by a proper discretization of the boundary conditions is 
applied at grid points at or near the material discontinuity. In the alternative 
heterogeneous approach only one FD scheme is used for all interior grid points (points 
not lying on boundaries of a grid) no matter what their positions are with respect to the 
material discontinuity. The presence of the material discontinuity is accounted for only 
by assigning appropriate values of elastic moduli and density. Therefore, except for 
treating the free surface, the heterogeneous approach has been much more popular since 
the beginning of the seventies. 

A homogeneous FD scheme is specific for a particular problem. Its application to 
complex models with curved material discontinuities is difficult and therefore 
impractical. Moreover, finding a stable and sufficiently accurate FD approximation to 
the boundary conditions is not a trivial problem, see, e.g., Kummer and Behle (1982), 
Slawinski and Krebes (2002). 

While widely used, the heterogeneous approach has not been addressed properly 
until very recently. The point is that the heterogeneous approach can be justified only 
when a heterogeneous formulation of the equation of motion and Hooke’s law, that is, 
the same form of the equations for both a point away from the material discontinuity 
and a point at the material discontinuity, can be found. This question will be analyzed 
in the next section. 
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The Equation of Motion, Hooke’s Law, and FD Schemes 
 
Given a model, the equation of motion and Hooke’s law (the stress-strain relation, 
constitutive law) together with the initial and boundary conditions fully describe a 
problem of seismic wave propagation and motion. Consider a Cartesian coordinate 
system 1 2 3( , , )x x x , for example, with the 1x -axis horizontal and positive to the right, 

and the 3x -axis positive downward. Let ( )ixρ ; { }1, 2,3i ∈  be density, ( )i jk l qc x  tensor 

of elastic coefficients, ( )ixκ  bulk modulus, ( )ixμ  shear modulus, ( , )iu x tG  

displacement vector, ( , )iv x tG  particle-velocity vector, ( , )if x t
G

 body force per unit 
volume, ( , )i j kx tσ  and ( , )i j kx tε ; { }, , 1, 2,3i j k ∈  stress- and strain-tensors (from now 

on, 1 2 3, ,x x x  and  , ,x y z  may be used interchangeably; similarly, 1, 2, 3 and , ,x y z  in 
the subscripts of the displacement and stress-tensor components), i jδ  Kronecker delta. 

A partial time derivative will be denoted by a dot above the symbol or the operator t∂ ; 
for example, /i i t iu t u u∂ ∂ = = ∂� . A derivative with respect to the coordinate jx will 
be denoted by a comma followed by jx  or the operator j∂ ; for example, 

/ ,i j j i j j j i jxσ σ σ∂ ∂ = = ∂ . The Einstein summation convention for repeated 
indices will be assumed unless stated otherwise. 

With reference to the FD schemes developed during the last decades, the following 
alternative formulations of the equation of motion and Hooke’s law for anisotropic or 
isotropic media can be used as a starting point for deriving the FD schemes: 
 
displacement-stress 

 

( )1
3

,

2

i i j j i

i j i jk l k l

i j k k i j i j k k i j

u f

c

or

ρ σ

σ ε

σ κ ε δ μ ε ε δ

= +

=

= + −

��

 (6) 

 
displacement-velocity-stress 

 

( )1
3

,

2

i i j j i

i i

i j i jk l k l

i j k k i j i j k k i j

v f

v u
c

or

ρ σ

σ ε

σ κ ε δ μ ε ε δ

= +

=
=

= + −

�

�
 (7) 

 
velocity-stress 

 

( )1
3

,

2

i i j j i

i j i jk l k l

i j k k i j i j k k i j

v f

c

or

ρ σ

σ ε

σ κ ε δ μ ε ε δ

= +

=

= + −

�

��

� � ��

 (8) 
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displacement 

  

( ) ( ) ( )

( )

2
3 , , , , , ,

, ,

i k k i i j j j i j i

i i j k l k l j i

u u u u f

or

u c u f

ρ κ μ μ μ

ρ

⎡ ⎤= − + + +⎢ ⎥⎣ ⎦

= +

��

��

 . (9) 

 
Because it is not differentiated with respect to the spatial coordinates, the strain tensor 

( )1
2 , ,i j i j j iu uε = +  was used here in the first three formulations for brevity. 

The above are so-called strong formulations of the equation of motion. However, a 
FD method can also be applied to a (integral) weak form of the equation of motion. For 
example, a weak form of the Galerkin type is typical for the standard finite-element 
method (e.g., Zienkiewicz and Taylor, 1989; Ottosen and Petersson, 1992). 

When solving the strong form of the equation of motion, the boundary conditions at 
material discontinuities must be explicitly satisfied. The traction continuity at internal 
discontinuities and vanishing traction at the free surface are automatically satisfied by 
the weak-form solution (this is an advantage of the weak form). In contrast, continuity 
of displacement is an essential continuity condition that must be explicitly satisfied by 
the weak-form solutions.  

Whereas most of the recent FD schemes solve one of the strong forms, Geller and 
Takeuchi (1995, 1998) developed their optimally accurate FD schemes in application to 
the weak form of Strang and Fix (1973) and Geller and Ohminato (1994).   

In principle, any formulation can be used with any of the three types of the grids 
(conventional, partly-staggered, staggered). However, it is obvious that the 
displacement formulation is naturally connected with the conventional grid. This is 
because only displacement values are explicitly present both in the equations and grid. 
Similarly, the velocity-stress formulation is naturally connected with the staggered grid 
as all field quantities in the equation of motion and Hooke’s law are explicitly present 
in the grid. The particular structure (i.e., relative positions of the field quantities in 
space and time) of the staggered grid is unambiguously determined by the structure of 
the equation of motion and Hooke’s law, that is, by the temporal and spatial derivatives 
of the field quantities.   

In the early days of the FD method applied to seismology and seismics, the 
displacement formulation and conventional grid were used; for example, Alterman and 
Karal (1968), Boore (1970, 1972), Kelly et al. (1976). Because the conventional-grid 
displacement FD schemes had problems with instabilities in models with high-velocity 
contrasts and with grid dispersion in media with high Poisson’s ratio, Virieux (1984, 
1986) introduced the staggered-grid velocity-stress FD schemes for modeling seismic 
wave propagation. Virieux followed Madariaga (1976) who introduced the staggered-
grid formulation in his dynamic modeling of the earthquake rupture. Bayliss et al. 
(1986) and Levander (1988) introduced the 4th-order staggered-grid FD schemes which 
in 2D and 3D need at least four and eight times less memory, respectively, compared to 
the 2nd-order schemes. In terms of CPU the improvement is 5-8 times in 2D and 10-16 
in 3D. This is related to the grid dispersion. The staggered-grid FD schemes have 
become the dominant type of schemes in the FD modeling of seismic wave propagation 
and earthquake motion. In order to further reduce the memory requirements, Luo and 
Schuster (1990) suggested a staggered-grid displacement-stress 2D P-SV FD scheme 
which they called a parsimonious scheme. Because the scheme does not integrate stress 
in time, the stress-tensor components are only temporary quantities. Thus, the 
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displacement-stress scheme in 3D needs only 75% of the memory needed by the 
velocity-stress scheme. Rodrigues (1993), and Yomogida and Etgen (1993) used the 
8th-order 3D displacement-stress FD schemes, Ohminato and Chouet (1997) applied the 
2nd-order while Moczo et al. (2000, 2002) the 4th-order approximations. Moczo et al. 
(2000) analyzed the grid dispersion of the displacement-stress schemes (4th and 2nd 
order) and pointed out that the stability and grid dispersion of the displacement-stress, 
displacement-velocity stress and velocity-stress schemes are the same. The advantage 
of the displacement-velocity-stress scheme is that both displacement and particle-
velocity are calculated at no extra cost. 

The partly-staggered grid was probably first used in seismology by Andrews (1973) 
who applied it in modeling the fault rupture using his traction-at-split-node method. 
Magnier et al. (1994) realized disadvantages of the staggered-grid schemes in treating 
the anisotropic media and used the partly-staggered grid. Zhang (1997) used the partly- 
staggered grid in his 2D velocity-stress FD modeling. However, the developed schemes 
have not attracted much attention. Recently, the use of the partly-staggered grid was 
promoted by Saenger et al. (2000) and Saenger and Bohlen (2004). They called the grid 
rotated staggered grid since they obtained the spatial FD operator by the rotation of the 
standard staggered-grid operator. The term ‘rotated staggered grid’ is somewhat 
unfortunate because assuming one spatial grid position for the stress tensor and another 
position for the displacement vector, it is possible to find a variety of FD schemes - 
depending on the order of approximation. Only in one particular case can the spatial FD 
operator be obtained by the rotation of the standard staggered-grid operator though it is 
also easy to obtain it without explicit consideration of the rotation. In fact, the particular 
scheme used by Saenger et al. (2000) is a simple consequence of requirement of the 
same truncation error with respect to all coordinate axes. 

While the reason to use the partly-staggered grids for anisotropic media is obvious 
(all stress-tensor components located at the same grid position thus requiring no 
interpolation of particle velocities or strains), the application of the partly-staggered 
grid to account for the material heterogeneity has not been analyzed. Therefore, this 
application still needs to be theoretically more rigorously analyzed.  

A special aspect of the development is the FD schemes formulated for non-uniform 
grids. These will be mentioned in the section on the memory optimization and 
parallelization. 

Apart from the recent dominance of the staggered-grid FD schemes, Geller and his 
co-workers developed another important approach to the FD modeling of seismic wave 
propagation based on the weak form of the equation of motion. In their schemes 
displacement is the sole dependent variable, as opposed to the staggered-grid schemes. 
Geller and Takeuchi (1995) derived a general criterion for optimally accurate numerical 
operators, and used it to derive an optimally accurate frequency-domain scheme. Geller 
and Takeuchi (1998) used the criterion to derive an optimally accurate FDTD scheme 
for 1D problems. Takeuchi and Geller (2000) then developed optimally accurate FDTD 
operators for 2D and 3D problems. These derivations yield implicit schemes which are 
solved using a predictor-corrector algorithm, so that the actual computational schemes 
are explicit. Whereas optimally accurate FDTD schemes require at least twice the CPU 
time per grid point and time step compared to 2nd-order staggered-grid FD schemes, 
they yield accuracy improvements on the order of 10 (for 1-D), 50 (for 2-D), or 100 (for 
3-D). From this point of view they are cost-effective.  The optimally accurate schemes 
have not yet been widely used in practical FD modeling. The likely reasons are a) the 
theory might appear relatively complicated compared to that of the standard staggered-
grid schemes, b) the fact that quantification and minimization of computational error 
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have not heretofore been widely viewed as high priorities, c) inertia with respect to 
traditional approaches and the lack of user-friendly codes for optimally accurate 
schemes. However, it is likely that optimally accurate FD schemes will be more widely 
used in the future. 

An interesting approach to develop alternative FD scheme was presented by 
Holberg (1987). Instead of minimizing the error measured in terms of higher-order 
derivatives he minimized the relative error in group velocity caused by the grid 
dispersion within a specific frequency band emitted by active sources. Therefore he did 
not develop the FD operator with the predetermined order of the truncation error using 
the Taylor expansions. Holberg defined the FD operator as a differentiator realized by a 
convolutory (FIR) operator. 

Whereas most of the recent FD schemes are 2nd-order accurate in time, it is possible 
to increase the order of accuracy by employing the Lax-Wendroff correction (Lax and 
Wendroff,  1964; Dablain, 1986). The leading term in the truncation error for the 2nd-
order FD approximation to time derivative is replaced by a term with only spatial 
derivatives using the equation of motion. Although the form of the Lax-Wendroff 
schemes is quite different from the optimally accurate schemes of Geller and co-
workers, Mizutani et al. (2000) have shown that these two types of scheme are in fact 
essentially identical. An efficient implementation of the approach for viscoelastic media 
was presented by Blanch and Robertsson (1997). An alternative approach for the time 
stepping is to use the Chebychev expansion method by Tal-Ezer et al. (1990) which 
combines computational efficiency with spectral accuracy in time. 

 
 

Algorithms for Enhancing Computational Performance 
 
A significant part of the literature has been devoted to enhancing the computational 
efficiency of FDTD by taking a more holistic view as to how FDTD are applied to 
solve a computational problem.  Several methods for hybrid modeling were developed 
in the eighties and nineties where different computational techniques are used either for 
temporal/spatial dependences (e.g., Alexeev and Mikhailenko, 1980) or in different 
parts of the model appropriate for the local wave propagation regime (e.g., Shtivelman, 
1984, 1985; Kummer et al., 1987; Stead and Helmberger, 1988; Emmerich, 1989, 1992; 
Fäh, 1992; Robertsson et al., 1996; Zahradník and Moczo, 1996; Moczo et al., 1997; 
Lecomte et al., 2004). For instance, for a reflection seismic problem, in a smoothly 
varying overburden a ray-based solution may be appropriate whereas FDTD are needed 
only in the vicinity of a complex target where the energy reflects and is reverberated 
back towards the surface. Such an approach can enable computational savings of 
several orders of magnitude depending on the specific application and model and will 
be particularly significant in 3D.  Problems with implementing and using such methods 
are related to model generation and interfacing the different methods which tend to be 
different from problem to problem making the process very difficult to implement in an 
automatic fashion. 

A somewhat different approach was taken by, for instance, Robertsson and 
Chapman (2000) and Robertsson et al. (2000) who proposed to use a technique, 
referred to as FD-injection, fully based on finite differences for regenerating the FD 
response in a model following local model alterations. The computational savings can 
be very significant, particularly for applications such as full waveform inversion or 
time-lapse seismic analyses. 
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Recently, van Manen et al. (2005) have proposed a method based on concepts from 
time-reversal acoustics (Fink, 1997), that may become an important tool in synthesizing 
seismic data.  The approach relies on a representation theorem of the wave equation to 
express the Green’s function between points in the interior as an integral over the 
response in those points due to sources on a surface surrounding the medium. 
Following a predictable initial computational effort, Green’s functions between 
arbitrary points in the medium can be computed as needed using a simple cross-
correlation algorithm. 
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Optimally Accurate FD Operators 
 
A linear mechanical system or a finite volume of elastic continuum preferably supports 
oscillatory motion at certain frequencies which are called eigenfrequencies or resonant 
frequencies, i.e. at normal modes. In other words, the oscillatory motion is naturally 
most amplified at these frequencies. The same is also true about a numerical error in a 
discrete numerical system which is a numerical approximation to the true physical 
system. The basic idea of Geller and Takeuchi (1995) therefore seems quite obvious: to 
minimize the error of the numerical solution first of all at eigenfrequencies. 

Geller and Takeuchi (1995) used first-order Born theory and a normal mode 
expansion to obtain formal estimates of the relative error of the numerical solution and 
a general criterion for what they called optimally accurate operators. The criterion 
requires that the inner product of an eigenfunction and the net error of the discretized 
equation of motion should be approximately equal to zero when the operand is the 
eigenfunction and the frequency is equal to the corresponding eigenfrequency. An 
important aspect of the approach is that it is not necessary to know the actual values of 
the eigenfrequencies and eigenfunctions to use the criterion to derive optimally accurate 
operators. Geller and Takeuchi (1995) showed that in the case of a heterogeneous 
medium the criterion is the logical extension of the criterion to minimize grid 
dispersion of phase velocity for a homogeneous medium. Based on this criterion, Geller 
and Takeuchi (1998) derived optimally accurate 2nd-order weak-form FDTD scheme for 
the elastic 1D case. Takeuchi and Geller (2000) then generalized their approach to the 
2D and 3D cases. 

Though the optimally accurate FD operators are not applicable to the staggered-grid 
schemes (they would lead to apparently intractable implicit schemes – according to 
Geller and Takeuchi, 1998), we consider them important and assume their wider 
applications in future FDTD modeling. Therefore, we briefly present the basics of 
Geller and Takeuchi’s approach, closely following Geller and Takeuchi (1995, 1998). 
 
 

General Criterion for Optimally Accurate FD Operators 
 
In the Direct Solution Method (DSM; Geller and Ohminato, 1994) the equation of 
motion for an anelastic solid is transformed into its Galerkin weak form (Strang and 
Fix, 1973), 
 
   ( )2 c gω − = −T H G G  , (10) 

 
where ω  is the angular frequency, T  mass matrix, H  stiffness matrix, cG  vector of 
expansion coefficients for the trial functions, gG  force vector, 
 

  ( )( ) ( ) ( ), , ,sr s r
r s i i r s i j i j k l lkV V

T dV H c dVφ ρφ φ φ
∗ ∗⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  , 

  (11) 

   ( )r
r i iV

g f dVφ
∗⎡ ⎤= ⎢ ⎥⎣ ⎦∫  , 
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( )r
iφ  is the i -th component of the r -th trial function, and ∗  means complex conjugate 

quantity. The displacement is represented as 
 
  ( )r

i r ir
u c φ=∑ . (12) 

 
If an infinite trial function expansion were used, equation (10) would yield exact 
solutions. In any practical application the trial function expansion will be finite and 
there will be some numerical error. The exact equation of motion can be formally 
written as 
 
   ( )2 e e ec gω − = −T H G G  . (13) 

 
The relation between the numerical and exact quantities is assumed in a form 
 
   , ,e e ec c cδ δ δ= + = + = +T T T H H H

JJGG G  , (14) 
 
where δT , δH  and cδ

JJG
 are errors of the numerical operators and solution, 

respectively. 
The normal modes satisfy equation 
 

  ( )2 0e e
p pcω − =T H G , (15) 

 
where pω  is an eigenfrequency of the p -th mode and pc

G  is the eigenvector. 
Orthonormalization is assumed in a form 
 
   2 2e e

p q p p q p pqc c c cω ω δ∗ ∗= =H TG G G G
 . (16) 

 
Substituting eqs. (14) into the l.h.s. of eq. (10), replacing the r.h.s. of eq. (10) by the 
l.h.s. of eq. (13), and neglecting terms with products of errors (the first-order Born 
approximation) leads to 
 
   ( ) ( )2 2e e ec cω δ ω δ δ− = − −T H T H

JJG G  . (17) 

 
Eq. (17) enables to determine the error of the numerical solution, cδ

JJG
, if the exact 

solution and errors of the operators, i.e., ecG , δT  and δH  are known. 
The solution of eq. (13) can be represented in terms of an eigenfunction expansion 

 
   e e

p pp
c d c=∑G G  . (18) 

 
Substituting eq. (18) into eq. (13), and using eq. (16) leads to 
 
   ( )2 2e

p p pd c g ω ω∗= −G G  . (19) 
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The expansion coefficient e
pd  will be large, when ω  is close to pω . Otherwise, it will 

be negligible. 
The solution of eq. (17) can also be represented in terms of an eigenfunction 

expansion 
 
   p pp

c d cδ δ= ∑
JJG G  . (20) 

 
Substituting expansions (18) and (20) into eq. (17), and using eqs. (16) leads to 
    
   ( ) ( )2 2 2e

p p q p q q pq
d c c c c dδ ω δ δ ω ω∗ ∗= − − −∑ T HG G G G  . (21) 

 
The expansion coefficient pdδ  will be large only when ω  is close to pω . In such a 

case obviously only e
pd  will be large. Therefore, in the vicinity of pω ω= , the q p≠  

terms in eq. (21) can be neglected, i.e., the relative error of the numerical solution in the 
vicinity of pω  will approximately be 
 

   ( ) ( )2 2 2p
p p p p pe

p

d
c c c c

d

δ
ω δ δ ω ω∗ ∗= − − −T HG G G G  . (22) 

 
It follows from eq. (22) that the relative error will in general greatly increase with 

pω ω→ . However, if the numerator of eq. (22) is also proportional to pω ω− , the 

relative error will remain approximately constant as pω ω→ . Such proportionality can 
be achieved if and only if 
 
 2 0p p p p pc c c cω δ δ∗ ∗− =T HG G G G

�  (23) 
 
for each mode. If eq. (23) is approximately satisfied, then eq. (22) can be simplified: 
 

  p
p pe

p

d
c c

d

δ
δ∗≈ TG G  . (24) 

 
This means that the relative error for a given grid can be reliably estimated in advance 
of calculation. 

Geller and Takeuchi (1995) defined optimally accurate operators, say 'T  and 'H ,  
as operators that satisfy eq. (23): 
 
   ( )2 ' ' 0p p pc cω δ δ∗ − =T HG G

�  . (25) 

 
Substituting first two of eqs. (14) for operators 'T  and 'H  into eq. (25) and using eq. 
(15) leads to equivalent equation 
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  ( )2 ' ' 0p p pc cω∗ − =T HG G
�  . (26) 

 
Eq. (25) will be satisfied if the leading term of the truncation error of the discretized 
equation is zero when the operand is an eigenfunction and the frequency is equal to the 
corresponding eigenfrequency, in other words if 
 
   ( )2 ' ' 0p pcω δ δ− =T H G

�  . (27) 

 
On the other hand, however, it is not necessary for eq. (27) to be satisfied in order for 
eq. (25) to be satisfied, because even if the quantity on the l.h.s. of eq. (27) is non-zero, 
its inner product with pcG  can still be approximately zero. Geller and Takeuchi (1995, 
1998) and Takeuchi and Geller (2000) take advantage of this fact to derive optimally 
accurate operators using a two-step methodology. First, for interior points, they derived 
optimally accurate operators that satisfy eq. (27).  Second, to complete the derivation of 
the optimally accurate operators, they “fill in” the few remaining degrees of freedom 
(corresponding to boundary points or their neighbors) so that eq. (25) is approximately 
satisfied, even though eq. (27) is not necessarily satisfied.  

In this review, for simplicity, we discuss only the simplest case of optimally 
accurate 1-D TDFD operators for interior points only.  For a discussion of the treatment 
of the boundary operators, see, for example, sections 3 and 4 of Geller and Takeuchi 
(1995). 

Consider the equation 
 
 ( ),exact LHS u fω =

G
 (28) 

 
and such its discretization which gives 
 

     ( ) ( ) ( )
2

, , , ...hdiscretized LHS u exact LHS u exact LHS u
a

ω ω ω ′′⎡ ⎤= + +⎣ ⎦  , (29) 

 
where the primes denote spatial differentiation. The normal modes satisfy the equation 
 
   ( ), 0p pexact LHS uω =  , (30) 
 
which implies 
 

   ( ), 0p pexact LHS uω ′′⎡ ⎤ =⎢ ⎥⎣ ⎦  . (31) 

 
Considering normal modes in eq. (29), and substituting eqs. (30) and (31) into eq. (29) 
leads to 
 
   ( ), 0p pdiscretized LHS uω =�  , (32) 
 
which corresponds to condition (26). This shows that the leading term of the truncation 
error of each FD approximation used to discretize the l.h.s. of eq. (28) has the same 
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coefficient, 2h a , and the displacement 2 times more differentiated than in the 
approximated term. Thus, we have an indication for constructing optimally accurate 
discretization. 
 
 

Optimally Accurate FD Operators for 1D problem in a Homogeneous Medium 
 
In order to illustrate the above theory, we closely follow the 1D problem for a 
homogeneous medium in Geller and Takeuchi (1998). Consider 1D equation 
 

   
2

2
uu C f

x
ρ ∂= +

∂
��  . (33) 

 
A weak-form FDTD approximation to the equation can be written as 
 
   ( ) ( ) ( ), , ,m m m

I I IA M i K M i U M i F⎡ ⎤− =⎢ ⎥⎣ ⎦  , (34) 

 
where m  is the time level, at which eq. (34) is approximated, I  index of the spatial 
position at which eq. (34) is approximated, M  time summation index, i  spatial 
summation index. Matrix m

IA  has the form 
 

   

( 1, 1) ( 1, ) ( 1, 1)

( , ) ( , 1) ( , ) ( , 1)

( 1, 1) ( 1, ) ( 1, 1)

m m m
I I I

m m m m
I I I I

m m m
I I I

A m I A m I A m I

M i A m I A m I A m I

A m I A m I A m I

⎡ ⎤+ − + + +⎢ ⎥
⎢ ⎥
⎢ ⎥= − +⎢ ⎥
⎢ ⎥− − − − +⎢ ⎥⎣ ⎦

A  , (35) 

 
matrix m

IK  has an analogous structure. The conventional operators, corresponding to 
the standard difference formula (4), are 
 

   2 2

0 1 0 0 0 0
0 2 0 , 1 2 1
0 1 0 0 0 0

m m
I I

C
t h

ρ
Δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A K  . (36) 

 
The operator error at a single point in space and time approximately is (only the leading 
term is given) 
 

   ( ) ( ) ( )
2 4 2 4

4 4
,

, , ,
12 12

m m
I I

m I

t u h uA M i K M i U M i C
t x

δ δ ρΔ⎡ ⎤∂ ∂⎡ ⎤ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥⎣ ⎦
�  , (37) 

 
where m

IδA  and m
IδK  are differences between the conventional and exact operators. 

In order to derive an optimally accurate FDTD scheme, Geller and Takeuchi (1998) 
take the Fourier transform of eq. (34), to obtain the FD equation in the frequency 
domain for purposes of error analysis: 
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   ( ) ( ) ( )I I IA i K i U i F⎡ ⎤− =⎢ ⎥⎣ ⎦

� � � �  . (38) 
 
Because eq. (38) has essentially the same form as eq. (10), the above theory of the error 
of the numerical solution can be applied. The difference is that the operator errors here 
depend on frequency and wavenumber. 

The Fourier transform of eq. (37) is 
 

   ( ) ( ) ( )
2 2 2 2 2

2
2 212 12I I

I

t h d d uA i K i U i u C
dx dx

ωδ δ ρωΔ⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎡ ⎤ ⎟− = − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜⎣ ⎦ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
� � � � . (39) 

 
It is clear from eq. (39) that the error is not equal to zero when the operand is an 
eigenfunction and frequency is equal to eigenfrequency. This would be the case if 
 

 ( ) ( ) ( )
2 2 2 2 2

2
2 212 12I I

I

t h d d uA i K i U i u C
dx dx

ωδ δ ρωΔ⎛ ⎞ ⎡ ⎤⎟⎜⎡ ⎤ ⎢ ⎥⎟− = − +⎜ ⎟⎢ ⎥ ⎜ ⎢ ⎥⎣ ⎦ ⎟⎟⎜⎝ ⎠ ⎢ ⎥⎣ ⎦
� � � �  (40) 

 
because the expression inside the brackets is the l.h.s. of the exact homogeneous 
equation of motion in the frequency domain, which is zero when the operand is an 
eigenfunction and the frequency is the corresponding eigenfrequency. A time-domain 
equivalent to eq. (40) can be obtained by applying the inverse Fourier transform to eq. 
(40): 
 

   

( ) ( ) ( )
2 2 2 2 2 2 2 2

2 2 2 2 2 2
,

, , ,

12 12

m m
I I

m I

A M i K M i U M i

t u u h u uC C
t t x x t x

δ δ

ρ ρΔ

⎡ ⎤− =⎢ ⎥⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥ ⎢ ⎥= − + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

�

�
. (41) 

 
The operators that yield error (41) are 
 

   2 2

1 12 10 12 1 12 1 12 2 12 1 12
2 12 20 12 2 12 , 10 12 20 12 10 12
1 12 10 12 1 12 1 12 2 12 1 12

mm
I I

C
t h

ρ
Δ

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

A K  .(42) 

 
Though, obviously, the operators (42) come from the condition (41), which 

corresponds to conditions (25) and (26), it is now easy to see relation to the 
conventional operators. Consider, e.g., approximation to the second time derivative at 
time level m  and spatial position I .  While the conventional approximation, formula 
(4), is 
 

   ( )
2

1 1
2 2

,

1 2m m m
I I I

m I

u U U U
t tΔ

− +∂ = − +
∂

�  , (43) 
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the approximation corresponding to the optimally accurate operator m
IA  in eq. (42) is 

 

 
2 2 2 2

2 2 2 2
, , 1 , , 1

1 10
12

m I m I m I m I

u u u u
t t t t− +

⎛ ⎞⎟⎜∂ ∂ ∂ ∂ ⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎜⎝ ⎠
�  (44) 

 
where the conventional approximation (43) is used to approximate derivatives at time 
level m  at all three spatial positions 1I − , I  and 1I + . Similarly, the optimally 
accurate spatial second derivative is approximated over three time levels 1m− , m  and 

1m+ . 
It is obvious that optimally accurate operators yield an implicit FD scheme. In order 

to avoid necessity to solve a system of simultaneous linear equations at each time step, 
Geller and Takeuchi (1998) applied a predictor-corrector scheme. Note that the 
predictor-corrector optimally accurate scheme and the Lax-Wendroff scheme are 
essentially the same (Mizutani et al., 2000).   

As already mentioned, Takeuchi and Geller (2000) generalized the approach based 
on the optimally accurate operators to solve 2D and 3D problems. 
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Complex Viscoelastic Media with Material Discontinuities 
 
As already mentioned, accounting for realistic attenuation and heterogeneity of the 
medium, particularly in the presence of material discontinuities in the Earth’s interior, 
is of crucial importance in modeling seismic wave propagation and earthquake motion. 
While seismologists tried to model material discontinuities from the very beginning of 
the application of the FDM in seismology, the incorporation of the realistic attenuation 
was made possible considerably later. We first briefly review the problem of material 
heterogeneity and material discontinuities in the strong formulation of the equation of 
motion. 
 
 

A Material Discontinuity in the Elastic Medium 
  

In one of the pioneering efforts on the application of the FDM to seismic wave 
propagation, Alterman and Karal (1968) introduced the concept of fictitious grid points 
in order to approximate boundary conditions on material discontinuities in their 
displacement FD scheme. Difficulties in application of the homogeneous approach to 
curved discontinuities led Boore (1972) to explicitly include a stress-continuity 
condition on discontinuities differently from the homogeneous and heterogeneous 
approaches. Due to poor numerical properties of his explicit continuous stress method, 
Boore (1972) applied the heterogeneous approach in his SH modeling. In order to 
follow detailed variation of the torsion modulus and, at the same time, to avoid 
derivatives of the modulus, he used the mathematical trick of Tikhonov and Samarskii 
(see, e.g., Mitchell 1969, p.23) and calculated effective grid moduli as integral 
harmonic averages along a grid line between two neighboring grid points. Ilan et al. 
(1975) and Ilan and Loewenthal (1976) applied the homogeneous approach to the 2D P-
SV problem on horizontal and vertical planar discontinuities. They used Taylor 
expansions of displacement to couple the equation of motion with the boundary 
conditions. Kelly et al. (1976) presented their heterogeneous P-SV schemes with simple 
intuitive averaging of material parameters. They numerically compared the 
heterogeneous approach with the homogeneous one and showed unacceptable 
difference between the two approaches in the case of the corner-edge model. Kummer 
and Behle (1982) followed the approach of Ilan et al. (1975) and derived the 2nd-order 
SH schemes for grid points lying on different types of segments of the step-like 
polygonal discontinuity. Virieux (1984, 1986) used the velocity-stress formulation and 
staggered grid introduced to seismology by Madariaga (1976). His P-SV FD scheme 
did not suffer from stability problems caused by large values of Poisson’s ratio, which 
was the case of all displacement schemes on conventional grids. Since the work by 
Virieux, the staggered-grid FD schemes became the dominant schemes applied to 
seismic wave propagation in heterogeneous media. Virieux also discussed the 
discrepancy between the homogeneous and heterogeneous approaches found by Kelly 
et al. (1976). He found it difficult to explain features of the solution obtained by the 
homogeneous approach. 

An attempt to incorporate internal boundary conditions into a displacement FD 
scheme was made by Sochacki et al. (1991) who integrated the equation of motion over 
a grid cell that could possibly contain a material discontinuity. The integrated equation 
of motion was then discretized. Schoenberg and Muir (1989) developed a calculus to 
replace a stack of thin flat elastic anisotropic homogeneous layers by an equivalent (in 
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the long-wavelength limit) homogeneous anisotropic medium. As a result, they found 
that stress-strain relation for an averaged medium satisfies the boundary conditions at 
interfaces. Applying the Schoenberg-Muir calculus simplifies modeling of wave 
propagation and, at the same time, accounts for transversal anisotropy. Muir et al. 
(1992) applied the Schoenberg-Muir calculus to a grid cell containing material 
discontinuity, i.e., in general, they treated contents of the cell as a stack of thin flat 
layers that can be averaged by the Schoenberg-Muir calculus. The two papers did not 
have the impact on the heterogeneous FD schemes that they deserved - likely because 
the authors did not make explicit reference to the question of the heterogeneous FD 
schemes. Zahradník and Priolo (1995) explicitly pointed out the problem of 
heterogeneous FD schemes. Assuming discontinuous material parameters in the 
equation of motion they obtained an expression whose dominant term is equivalent to 
the traction continuity condition. As other developers of the heterogeneous FD schemes 
they were not aware of the work by Schoenberg and Muir. Graves (1996) intuitively 
suggested a formula for determination of effective material grid parameters in the 3D 
4th-order velocity-stress staggered-grid schemes and numerically demonstrated the good 
level of accuracy. Zhang and Symes (1998) developed a 2D 4th-order full-stencil 
immersed interface technique to account for a curved material discontinuity. In the first 
step, all grid points are solved using a standard FD scheme. In the second step, each 
grid point whose stencil includes grid points from both sides of the discontinuity is 
recalculated using previous time step’s values with a special 25-point scheme 
determined using local boundary conditions. Moczo et al. (2002) analyzed the 1D 
problem in a medium consisting of two halfspaces. They demonstrated their method on 
a simple physical model of the contact of two media, found a heterogeneous 
formulation of the equation of motion and Hooke’s law, and derived a heterogeneous 
FD scheme. Finally they analyzed the 3D problem, suggested a 4th-order heterogeneous 
staggered-grid FD scheme, and demonstrated its accuracy compared to the standard 
staggered-grid FD schemes. Their analysis will be followed in the next sections.  
 
 

1D problem 
 
Consider two elastic halfspaces with a welded interface in the plane 0x= . The wave 
propagation in the halfspaces is described by equations 
 
 , , ,x xu f C uρ σ σ± ± ± ± ± ± ±= + =��  (45) 
 
where the superscript +  refers to one halfspace and superscript −  to the other. Either 
( ),u x t  is the x-component of the displacement ( ),0,0xu u

G , ( ),x tσ  the xx-component 

of the stress tensor, ( ),f x t  the x-component of the body force per unit volume 

( ),0,0xf f
JG

 and ( ) ( ) ( )2C x x xλ μ= +  in the case of P wave, or ( ),u x t  is the 

y-component of the displacement ( )0, ,0yu u
G

, ( ),x tσ  the xy-component of the stress 

tensor, ( ),f x t  the y-component of the body force per unit volume ( )0, ,0yf f
G

 and 

( ) ( )C x xμ=  in the case of the SH wave (the coordinate system can always be rotated 
so that the S wave could be the SH wave). At the welded interface the continuity of 
displacement and traction applies: ( ) ( ) ( ) ( )0 0 , 0 0u u σ σ− + − += = . Because a 
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heterogeneous FD scheme should be nothing else than a discrete approximation to a 
differential problem, a heterogeneous formulation of the differential problem is to be 
found. This means the same form of the equation of motion and Hooke’s law for a point 
at a material discontinuity as a point away from the material discontinuity. 

Let ( )xϕ± , ( )c x±  and ( )g x±  be real functions of a real argument x  such that 
 
 ( ) ( ) ( )x c x g xϕ ± ± ±=  (46) 
and 
  ( ) ( )0 0ϕ ϕ− +=  . (47) 
 
Functions ( )c x±  and ( )g x±  may have discontinuities of the first order at 0x= . 
Define 
 
  ( ) ( ) ( )0 0.5 0 0g g g− +⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦  . (48) 

 
Then it follows that 
 
   ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 ; 0 2 1 0 1 0 .c g c c cϕ ϕ− + − +⎡ ⎤= = = +⎢ ⎥⎣ ⎦  (49) 

 
If  ( ) ( )1c x r x± ±= , then 
 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )10 0 0 ; 0 0.5 0 0 .
0

g r r r
r

ϕ ϕ− + − +⎡ ⎤= = = ⋅ +⎢ ⎥⎣ ⎦  (50) 

 
It follows from eqs. (46) to (50) that the equation of motion and Hooke’s law for a point 
at the material discontinuity have the form 
 
 ( ) ( ) ( ) ( )0 0 , 0 0xu fρ σ= +��  (51) 
and 
   ( ) ( ) ( )0 0 , 0xC uσ =  , (52) 
 
respectively, with a density equal to the arithmetic average of the densities in the two 
halfspaces, and elastic modulus equal to the harmonic average of the moduli in the two 
halfspaces: 
 
  ( ) ( ) ( ) ( ) ( ) ( )0 0.5 0 0 , 0 2 1 0 1 0C C Cρ ρ ρ− + − +⎡ ⎤ ⎡ ⎤= ⋅ + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . (53) 

 
The average spatial derivatives of the stress and displacement are 
 

 
( ) ( ) ( )

( ) ( ) ( )

, 0 (0) 0.5 , 0 , 0 (0) (0)

, 0 0.5 , 0 , 0 .

x x x

x x x

f f f

u u u

σ σ σ− + − +

− +

⎡ ⎤+ = ⋅ + + +⎢ ⎥⎣ ⎦
⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

  (54) 
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It is obvious that eqs. (51) and (52) for a point at the material discontinuity have the 
same form as the equation of motion and Hooke’s law (45), at a point away from the 
material discontinuity. This provides a basis for the heterogeneous 1D FD scheme. 

Moczo et al. (2002) also showed that two Hooke elements (elastic springs) 
connected in series make an appropriate rheological model for considering traction 
continuity at the welded interface of two elastic materials. 

Consider, for example, the velocity-stress formulation. Let m
IV , m

IT  and m
IF  be the 

discrete approximations to particle velocity ( ),m
Iv v Ih m tΔ= , stress ( ),m

I Ih m tσ σ Δ=  

and body force ( ),m
If f Ih m tΔ= . One possible heterogeneous 4th-order staggered-grid 

FD scheme for the 1D problem is 
 

   

( ) ( )

( ) ( )

1
1 2 1 2

1 2 1 2 1 2 1 2
1 2 2 1 1

1 2 1 2

3 2 3 2 1 2 1 2
1

m m
I I

m m m mH
I II I I

m m
I I

m m m m m
I I I I IA A

I I

T T

tC a V V b V V
h

V V
t ta T T b T T F

hρ ρ

Δ

Δ Δ

−
+ +

− − − −
+ + − +

+ −

+ − + −

=

⎡ ⎤+ − + −⎢ ⎥⎣ ⎦

=

⎡ ⎤+ − + − +⎢ ⎥⎣ ⎦

  (55) 

 
with 

 ( )
1 2 1

1 2

1

1 2
1 1 1,

( )

I I

I I

x x
A H
I I

x x

x dx C dx
h h C x

ρ ρ
+ +

−

−

+

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∫ ∫ . (56) 

 
The coefficients in eqs. (55) are 1 24a=−  and 9 8b= . In the scheme, the averaging 
of the spatial derivatives of the functions at the material discontinuity is neglected while 
the harmonic averaging of the elastic moduli and arithmetic averaging of densities at 
the material discontinuity is taken into account (see Moczo et al., 2002 for details). In 
general, the integrals are evaluated numerically. It is easy to check that the scheme 
yields very good accuracy in smoothly and/or discontinuously heterogeneous media. 
The scheme is capable to sense a true position of the material discontinuity no matter 
what the position of the discontinuity is with respect to the grid points. 

While Tikhonov and Samarski (e.g., Mitchell 1969, p.23) obtained the harmonic 
averaging as a result of the mathematical ‘trick‘ to avoid spatial derivatives of the 
coefficients in the 2nd-order displacement formulation, the harmonic average in the 
heterogeneous formulation (52) is due to traction-continuity condition at the material 
discontinuity. 
 

3D problem 
 
Define stress and strain vectors 
 

  , , , , , , , , , , ,
T T

xx yy zz xy yz zx xx yy zz xy yz zxσ σ σ σ σ σ σ ε ε ε ε ε ε ε⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
GG . (57) 
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Hooke’s law for an isotropic medium can be written as 
 
 σ ε=E GG  (58) 
where 
 

 

4 2 2
3 3 3
2 4 2
3 3 3
2 2 4
3 3 3

0 0 0
0 0 0
0 0 0

0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

κ μ κ μ κ μ
κ μ κ μ κ μ
κ μ κ μ κ μ

μ
μ

μ

⎡ ⎤+ − −⎢ ⎥
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− − +⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

E  (59) 

 
is the elasticity matrix. Let moduli κ  and μ  have a discontinuity of the first order 
across a surface S with normal vector nJG . The surface S defines the geometry of the 
material discontinuity (interface). The welded-interface boundary conditions are 
continuity of displacement ( )u η

GG  and traction ( )
G G G,T nη  across the surface: 

 
 ( ) ( ) ( ) ( ), , , .u u T n T nη η η η+ − + −= =

G GG G G GG G G G  (60) 
 
For simplicity, consider first the planar surface S parallel to the xy-coordinate plane 
with a normal vector ( )0,0,1n=

G
. The conditions (60) imply 

 
 , , , , ,zx zx zy zy zz zz xx xx yy yy xy xyσ σ σ σ σ σ ε ε ε ε ε ε+ − + − + − + − + − + −= = = = = = . (61) 
 
The components xxσ , yyσ , xyσ , zxε , zyε  and zzε  may be discontinuous across the 
material discontinuity. Define averaged stress and strain vectors at the material 
discontinuity: 
  ( ) ( )1 1

2 2,A Aσ σ σ ε ε ε+ − + −= + = +
G G GG G G  . (62) 

 
Due to the boundary conditions, 
 

  , , , , , , , , , , ,
T TA A A A A A A A

xx yy zz xy yz zx xx yy zz xy yz zxσ σ σ σ σ σ σ ε ε ε ε ε ε ε⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
GG . (63) 

 
Then Hooke’s law for a point on the material discontinuity is 
 
 A Aσ ε=E

GG �  (64) 
with the elasticity matrix 
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 ( )4
3

2 0 0 0

2 0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

A

A

H

A

H

H

μ

μ

κ μ

μ

μ

μ

Λ Λ Ψ

Λ Λ Ψ

Ψ Ψ

⎡ ⎤+⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

E�  (65) 

and 

 
( ) ( )

( )

2
22
33 4

34 4
3 3

2
3 4

34
3

2 ,

.

AA
H

A
H

κ μ μκ μ
κ μ

κ μ κ μ

κ μ
κ μ

κ μ

Λ

Ψ

⎡ ⎤ ⎛ ⎞⎛ ⎞ −− ⎟⎢ ⎥ ⎜⎟⎜ ⎟⎟ ⎜⎜= ⋅ + + ⋅ ⎟⎢ ⎥⎟ ⎜⎜ ⎟⎟ ⎜⎟⎜ + +⎜⎢ ⎥ ⎟⎟⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎛ ⎞− ⎟⎜ ⎟⎜= ⋅ +⎟⎜ ⎟⎟⎜ +⎜⎝ ⎠

 (66) 

 
Superscripts A and H denote arithmetic and harmonic averages, respectively. 

Relation (64) means that for a point on the material discontinuity it is possible to 
find the same form of Hooke’s law as for a point inside a homogeneous or smoothly 
heterogeneous medium, given by eq. (58). Considering the point on the discontinuity as 
a point of the averaged medium characterized by matrix iE  assures traction continuity 
at the point. There is, however, an important difference between laws (64) and (58). 
The matrix iE  for the averaged medium given by eq. (65) has 5 independent nonzero 
elements and the averaged medium is transversely isotropic. Matrix E  for any of the 
two isotropic media in contact has only 2 independent nonzero elements. This means 
that the exact heterogeneous formulation for a planar material discontinuity parallel 
with a coordinate plane increases the number of elastic coefficients necessary to 
describe the medium. 

Next let us consider a planar material discontinuity in a general position in a 
Cartesian coordinate system. Let the normal vector be ( ), ,x y zn n n n=G  with all non-zero 

elements. Find a Cartesian coordinate system x’y’z’ in which nG  is parallel to the z’-
axis. Then it is possible to find a matrix iE,  with 5 independent non-zero elements. 
Transforming the matrix iE,  into a matrix iE  in the original coordinate system xyz 
yields a symmetric elasticity matrix iE  which has, in general, all elements non-zero (5 
being independent). This means that all strain-tensor components are necessary to 
calculate each stress-tensor component at a point of the interface (not the case with the 
standard staggered grid), and 21 non-zero elastic coefficients are necessary at the point. 

If the geometry of a material discontinuity is defined by a non-planar smooth 
surface S, the surface may be locally approximated by a planar surface tangential to 
surface S at a given point. 

It is obvious that finding a heterogeneous formulation of the differential problem as 
a basis for a heterogeneous FD scheme for a medium with a material discontinuity in a 
general 3D problem is far more complicated than that in the 1D problem. A non-
simplified treatment and a corresponding FD scheme would lead to a substantial 
increase in memory requirement. 
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Therefore, Moczo et al. (2002) suggested a simplified approach: a) They wanted to 
keep the structure, number of operations and memory requirements of the standard 4th-
order staggered-grid scheme. b) At the same time, they chose to determine an effective 
grid elastic modulus (κ  or μ ) at each grid position of the stress-tensor components as 
volume harmonic average of the modulus within a volume of the grid cell centered at 
the grid position. The latter choice was based on the fact that harmonic averaging is 
exact in the 1D case, see eq. (49), and is a part of exact averaging in the 3D case, see 
eqs. (64) - (66). 

At each position of the displacement or particle-velocity component an effective 
grid density is determined as a volume arithmetic average of density within a volume of 
the grid cell centered at the grid position. The averaging applies to both smoothly and 
discontinuously heterogeneous media. The averages are evaluated by numerical 
integration. 

Let ,
1 2, 1 2, 1 2

xx m
I J KT + + +  be the discrete approximation to the stress-tensor component 

( ) ( ) ( )1 2 , 1 2 , 1 2 ,xx I h J h K h m tσ Δ⎡ ⎤+ + +⎣ ⎦ . Similarly, let  ,
, 1 2, 1 2
x m

I J KV + + , ,
1 2, , 1 2

y m
I J KV + + , 

,
1 2, 1 2,

z m
I J KV + +  and ,

, 1 2, 1 2
x m

I J KF + +   be discrete approximations to the particle-velocity  and 
body-force components. Examples of the FD schemes for the stress-tensor and particle-
velocity components  xxσ  and xv  are 
 

( ){
( ) ( )

, , 1
1 2, J 1 2, K 1 2 1 2, J 1 2, K 1 2

4
1 2, J 1 2, K 1 2 1 2, J 1 2, K 1 23

, 1 2 , 1 2 , 1 2 , 1 2
2, J 1 2, K 1 2 1, J 1 2, K 1 2 1, J 1 2, K 1 2 , J 1 2, K 1 2

1 2, J 1 2, 

xx m xx m
I I

H H
I I

x m x m x m x m
I I I I

I

T T

t
h

a V V b V V

κ μ

κ

Δ

−
+ + + + + +

+ + + + + +

− − − −
+ + + − + + + + + + +

+ +

= +

+ ⋅

⎡ ⎤− + −⎢ ⎥⎣ ⎦
+ ( )

( ) ( )
( )

2
K 1 2 1 2, J 1 2, K 1 23

, 1 2 , 1 2 , 1 2 , 1 2
1 2, J 2, K 1 2 1 2, J 1, K 1 2 1 2, J 1, K 1 2 1 2, J, K 1 2

, 1 2 , 1 2 , 1 2
1 2, J 1 2, K 2 1 2, J 1 2, K 1 1 2, J 1 2, K 1 1 2, 

H H
I

y m y m y m y m
I I I I

z m z m z m
I I I I

a V V b V V

a V V b V V

μ+ + + +

− − − −
+ + + + − + + + + + +

− − −
+ + + + + − + + + +

− ⋅

⎡ − + −⎢⎣

+ − + −( ) }, 1 2
J 1 2, K

z m−
+

⎤
⎥⎦

 (67) 

 
with 
 

 
1 1 1

1

1 2, J 1 2, K 1 2 3
1 1  d  d  d

I J K

I J K

x y z
H
I

x y z

x y z
h

κ
κ

+ + +
−

+ + +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∫ ∫ ∫  (68) 

 

 
1 1 1

1

1 2, J 1 2, K 1 2 3
1 1  d  d  d

I J K

I J K

x y z
H
I

x y z

x y z
h

μ
μ

+ + +
−

+ + +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∫ ∫ ∫  (69) 

 
and 
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( )
( ) ( )
( )

, 1 2 , 1 2
, J 1 2, K 1 2, J 1 2, K 1 2 , J 1 2, K 1 2

, , , ,
3 2, J 1 2, K 1 2 3 2, J 1 2, K 1 2 1 2, J 1 2, K 1 2 1 2, J 1 2, K 1 2

, ,
, J 2, K 1 2 , J 1, K 1 2
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II I
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I I I I
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+ + + − + + + + + − + +

+ + − +
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⎡ − + −⎢⎣
+ − + ( )
( ) ( )
( )

, ,
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a T T b T T

t FρΔ

+ + +

+ + + − + + +

+ + + +

−

⎤+ − + − ⎥⎦
+

 (70) 
with 

 

1
1 12

1
2

, J 1 2, K 1 2 3
1 d  d  d

I
J K

J KI

x
y z

A
I

x y z

x y z
h

ρ ρ
+

+ +

−

+ + = ∫ ∫ ∫  (71) 

 
Moczo et al. (2002) used a set of models to numerically test the scheme. The tests 
demonstrated its very good numerical accuracy. Here we illustrate an important 
property of the scheme - the capability to sense the position of a material discontinuity 
regardless of its position with respect to the spatial grid. Five different models of a 
single horizontal homogeneous layer located in between two homogeneous halfspaces 
differ from each other by the thickness of the layer. The spatial grid is one and the same 
in all five models (see the upper part of Fig. 2). A double-couple point source was 
located in the lower halfspace. The FD synthetics ( xu component) are compared with 
those calculated by the discrete wavenumber (DWN) method (Bouchon, 1981; 
computer code Axitra by Coutant, 1989), see the lower part of Fig. 2. The FD and 
DWN synthetics agree very well regardless of the position of the upper layer-halfspace 
interface with respect to the spatial grid. It is also clear from Fig. 2 that differences in 
thickness of the layer - smaller than one grid spacing - cause considerable changes in 
seismic motion. This often is underestimated by many modelers who consider the size 
of one grid cell as „atom of resolution” within which a FD scheme cannot see 
differences. This and other examples given by Moczo et al. (2002) clearly show that 
this is not the case if the scheme is sufficiently accurate. 
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Figure 2.  The upper part: Positions of the upper and lower layer-halfspace interfaces 

in five models of a layer between two halfspaces - shown schematically in 
one vertical grid plane. The five models differ from each other by position 
of the upper layer-halfspace interface in the spatial grid (the same for all 
models) and thus by the layer thickness. (For the parameters of the models 
see Tab. 1.) The lower part: Comparison of our FD and DWN synthetics for 
the five models. Note very good accuracy of the FD synthetics for any 
position of the layer-halfspace interface with respect to the spatial grid. Also 
note considerable differences between synthetics due to variations in the 
layer thickness that is smaller than one grid spacing. Reproduced from 
Moczo et al. (2002). 



 32

Incorporation of the Realistic Attenuation 
 

Stress-Strain Relation in Viscoelastic Medium – the 1D Case 
 
The behavior of real Earth’s material can be described as a combination of elastic solids 
and viscous fluids. The stress-strain relation therefore also should depend on time. The 
rheology of a viscoelastic medium seems appropriate for quantitative description of 
seismic wave propagation. Observations show that the internal friction in the Earth is 
nearly constant over the seismic frequency range, e.g. McDonal et al. (1958), Liu et al. 
(1976), Spencer (1981), Murphy (1982). 

The stress-strain relation in a linear isotropic viscoelastic material is given by the 
Boltzmann superposition principle. For the 1D problem this is 

 

  ( ) ( ) ( )
t

t t dσ ψ τ ε τ τ
−∞

= −∫ � , (72) 

 
where ( )tσ  is the stress, ( )tε�  the time derivative of the strain, and ( )tψ  the stress 
relaxation function defined as a stress response to a Heaviside unit step function in 
strain. According to eq. (72), the stress at a given time t  is determined by the entire 
history of the strain until time t . The integral in eq. (72) represents a time convolution 
of the relaxation function and the strain rate. Using the symbol ∗  for the convolution, 
eq. (72) can be written as 
 
  ( ) ( ) ( )t t tσ ψ ε= ∗ �  . (73) 
 
It follows from the definition of the relaxation function that its time derivative 
 
 ( ) ( )M t tψ= �  (74) 
 
is the stress response to the Dirac δ -function in strain and that 
 
  ( ) ( ) ( )t M t tσ ε= ∗  . (75) 
 
Let  F and F -1 denote the direct and inverse Fourier transforms 
 

 F ( ){ } ( ) ( )expx t x t i t dtω
∞

−∞

= −∫  ,   F  -1 ( ){ } ( ) ( )1 exp
2

X X i t dω ω ω ω
π

∞

−∞

= ∫  , 

 
where ω  is the angular frequency. Relation (75) can be Fourier-transformed into the 
frequency domain: 
 
 ( ) ( ) ( )Mσ ω ω ε ω= ⋅  . (76) 
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In general, ( )M ω  is a complex, frequency-dependent viscoleastic modulus. Due to 
properties of the Fourier transform 

 ( )tψ =F  -1 
( )M

i
ω
ω

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
 . (77) 

 
Equation (76) indicates the correspondence principle in the linear theory of 
viscoelasticity - in the frequency-domain, relations for the viscoelastic medium are 
obtained by replacing real frequency-independent moduli by complex, frequency-
dependent quantities. Thus, the incorporation of the attenuation into the frequency-
domain computations is much easier than that in the time domain. 

The time derivative of the stress is 
 
   ( ) ( ) ( )t M t tσ ε= ∗ ��  . (78) 

 
An instantaneous elastic response of the viscoelastic material is given by the so-called 
unrelaxed modulus UM , a long-term equilibrium response is given by the relaxed 
modulus RM : 

 
 ( ) ( ) ( ) ( )

0 0
lim lim , lim limU Rt t

M t M M t M
ω ω

ψ ω ψ ω
→ →∞ →∞ →

= = = =  . (79) 

 
The modulus defect or relaxation of modulus is 
 
 U RM M Mδ = −  . (80) 
 
Given the viscoelastic modulus, the quality factor ( )Q ω  is defined as 
 
 ( ) ( ) ( )Re / ImQ M Mω ω ω=  . (81) 
 

Due to large computer time and memory requirements, the stress-strain relation (72)
in some cases only allowed simplified ( )Q ω  laws, e.g. linear ( )Q ω . 
 
 

Conversion of the Convolutory Stress-Strain Relation 
into a Differential Form 

 
If ( )M ω  is a rational function, the inverse Fourier transform of eq. (76) yields the nth-

order differential equation for ( )tσ , which can be numerically solved much more easily 
than the convolution integral. Day and Minster (1984) assumed that, in general, the 
viscoelastic modulus is not a rational function. Therefore they suggested approximating 
a viscoelastic modulus by an nth-order rational function and determining its coefficients 
by the Padé approximant method.  They obtained n ordinary differential equations for n 
additional internal variables, which replace the convolution integral. The sum of the 
internal variables multiplied by the unrelaxed modulus gives an additional viscoelastic 
term to the elastic stress. The work of Day and Minster not only developed one 



 34

particular approach but, in fact, indirectly suggested the future evolution – a direct use 
of the rheological models whose ( )M ω  is a rational function of iω . In response to 
work by Day and Minster (1984), Emmerich and Korn (1987) realized that an 
acceptable relaxation function corresponds to a rheology of what they defined as the 
generalized Maxwell body – n Maxwell bodies and one Hooke element (elastic spring) 
connected in parallel; Fig. 3. Because in the rheological literature the generalized 
Maxwell body is defined without the additional single Hooke element, the abbreviation 
GMB-EK will hereafter be used for the model defined by Emmerich and Korn. Because 
the viscoelastic modulus of the GMB-EK has a form of a rational function, Emmerich 
and Korn (1987) obtained similar differential equations as Day and Minster (1984). In 
order to fit an arbitrary ( )Q ω  law they chose the relaxation frequencies logarithmically 
equidistant over a desired frequency range and used the least-square method to 
determine weight factors of the relaxation mechanisms (classical Maxwell bodies). 
Emmerich and Korn (1987) demonstrated that their approach is better than the approach 
based on the Padé approximant method both in accuracy and computational efficiency. 
Independently, Carcione et al. (1988a, b), in accordance with the approach by Liu et al. 
(1976), assumed the generalized Zener body (GZB) - n Zener bodies (ZB, standard 
linear bodies), connected in parallel; Fig. 4. Carcione et al. (1988a, b) developed a 
theory for the GZB and introduced the term memory variables for the obtained 
additional variables. 

After publications by Emmerich and Korn (1987) and Carcione et al. (1988a, b) 
different authors chose to use either the GMB-EK (for example, Emmerich, 1992; Fäh, 
1992; Moczo and Bard, 1993;  Moczo et al., 1997; Kay and Krebes, 1999) or GZB (for 
example, Robertsson et al., 1994; Blanch et al., 1995; Xu and McMechan, 1995; 
Robertsson, 1996; Hestholm 1999). In both cases the authors followed the 
corresponding mathematical formalisms. Moczo et al. (1997) applied the GMB-EK 
approach also in the finite-element method and hybrid FD-finite-element method. 
Emmerich and Korn (1987), Emmerich (1992), Fäh (1992), and Moczo and Bard 
(1993) defined one memory variable for one displacement component. Robertsson et al. 
(1994) introduced the memory variables based on the GZB rheology into the staggered-
grid velocity-stress FD scheme. Blanch et al. (1995) suggested an approximate single-
parameter method, τ -method, to approximate the constant ( )Q ω  law. Xu and 
McMechan (1998) used simulated annealing for determining a best combination of 
relaxation mechanisms to approximate a desired ( )Q ω  law. 

There appears to have been no or little comments by the authors using the GZB on 
the rheology of the GMB-EK and the corresponding algorithms, and vice versa. Thus, 
two parallel sets of publications and algorithms had been developed during years.  
Therefore, Moczo and Kristek (2005) addressed this development and showed relation 
between the two rheologies. 
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Figure 3.  Rheological model of the Generalized Maxwell Body (GMB-EK) 
defined by Emmerich and Korn (1987). HM  and lM  denote elastic 
moduli, lη  viscosity. 
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Figure 4.  Rheological model of the Generalized Zener Body (GZB). For a 

classical Zener body (standard linear body) there are two equivalent 
models: H-p-M , that is, Hooke element connected in parallel with 
Maxwell body, and H-s-KV, that is, Hooke element connected in series 
with Kelvin-Voigt body. In the H-p-M model it is easier to recognize the 
relaxed modulus RlM  and modulus defect lMδ .  1lM  and 2 lM  in the 

H-s-KV model denote elastic moduli. In both models lη  stands for 
viscosity. 
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Rheologies of the GMB-EK  and GZB 
 
There are simple rules in the time and frequency domains for the mathematical 
representation of the linear rheological models consisting of Hooke and Stokes 
elements (springs and dashpots) connected in parallel or series. In the frequency 
domain, the stress-strain relations for the Hooke and Stokes elements are 
( ) ( )Mσ ω ε ω= ⋅  and  ( ) ( )iσ ω ωη ε ω= ⋅  , respectively, where M  is the elastic 

modulus, and η  viscosity. If two elements are connected in series, stresses are equal 
while strains additive. If two elements are connected in parallel, stresses are additive 
while strains are equal. 
 
The application of the frequency-domain rules to the GMB-EK yields 
 

 ( )
1

, ; 1,..., ,
n

l
H l l l

ll

iMM M M l n
i
ω

ω ω η
ω ω=

= + = =
+∑  (82) 

where lω  is a relaxation frequency. The relaxed and unrelaxed moduli are 
 

 ( ) ( )
0 1

lim , lim
n

R H U R l
l

M M M M M M M
ω ω

ω ω
→ →∞ =

≡ = ≡ = +∑  . (83) 

 
Since U RM M Mδ= + , we get l lM Mδ=  , and it is possible to assume 
 

 
1

; 1
n

l l l
l

M a M aδ δ
=

= =∑  (84) 

without any simplification. Then 

 ( )
1

n
l

R
ll

iaM M M
i
ω

ω δ
ω ω=

= +
+∑  . (85) 

 
Using relation (77) it is straightforward to obtain the relaxation function 
 

  ( ) ( )
1

l

n
t

R l
l

t M M a e H tωψ δ −

=

⎡ ⎤
⎢ ⎥= + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑  , (86) 

 
where ( )H t  is the Heaviside unit step function. The above formulae were presented by 
Emmerich and Korn (1987). 

From the two equivalent models of the ZB, shown in Fig. 4, we choose the H-p-M 
type to obtain ( )M ω . This is because it is easy to recognize the relaxed modulus and 
modulus defect in the ZB. The application of the frequency-domain rules to the GZB 
results in 
 

 ( )
1

1
1

n
l

R l
ll

iM M
i
ε

σ

τ ωω
τ ω=

+=
+∑  (87) 

with relaxation times 
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 , ,U l U ll l l
l l

l R l l l R l

M M
M M M M

ε
ε σ

σ

η η ττ τ
δ δ τ
= = =  (88) 

and 
   U l Rl lM M Mδ= +  . (89) 
 
The unrelaxed and relaxed moduli are 
 

 
1 1 1

, .
n n n

l
R Rl U Rl R l

ll l l
M M M M M Mε

σ

τ
δ

τ= = =
= = = +∑ ∑ ∑  (90) 

 
Relations (77) and (87) yield the relaxation function 
 

 ( ) ( ) ( )
1

1 1 exp .
n

l
Rl l

ll
t M t H tε

σ
σ

τψ τ
τ=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎪ ⎪⎟⎪ ⎪⎜⎢ ⎥⎟= − − − ⋅⎜⎨ ⎬⎟⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
∑  (91) 

 
Assumption of simplification (Carcione, 2001) 
 

 1
Rl RM M

n
=  (92) 

leads to 
 

   ( ) ( ) ( ) ( )
1 1

1 1, 1 1 exp
1

n n
l lR

R l
l ll l

iMM t M t H t
n i n

ε ε
σ

σ σ

τ ω τω ψ τ
τ ω τ= =

⎡ ⎤⎛ ⎞+ ⎟⎜⎢ ⎥⎟= = − − − ⋅⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟+ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑  .  (93) 

 
Formulae (92) and (93) were presented by Carcione (2001). Unfortunately, all papers 
dealing with the incorporation of the attenuation based on the GZB, starting from Liu et 
al. (1976) until now, despite the book by Carcione (2001), have the same error – the 
missing factor 1 n  in the viscoelastic modulus and relaxation function. 
 
 

The Relation Between the GZB and GMB-EK 
 

Following Moczo and Kristek (2005), consider again the ZB (H-p-M) model. The 
application of the frequency-domain rules to the l-th ZB yields 
 

  ( ) ( )1 1 1 Rl Rl
l

l l l l

M M
M i M i

σ ω ε ω
δ η ω δ η ω

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟⋅ + = + + ⋅⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
 . (94) 

Defining 
 l l lMω δ η=  (95) 
and rearranging eq. (94) gives 
 

  ( ) ( ) ( ) ( ); l
l l l R l

l

i MM M M
i

δ ωσ ω ω ε ω ω
ω ω

= ⋅ = +
+

 . (96) 
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For n ZB connected in parallel, that is, for the GZB (Fig. 4), the stress is 
 

 ( ) ( ) ( ) ( )
1 1

n n

l l
l l

Mσ ω σ ω ω ε ω
= =

⎡ ⎤
⎢ ⎥= = ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑  (97) 

 
and thus 

  ( )
1 1

n n
l

R l
ll l

i MM M
i

δ ω
ω

ω ω= =
= +

+∑ ∑  . (98) 

Since 

  
1 1

, ,
n n

R Rl U R l U R
l l

M M M M M M M Mδ δ
= =

= = + = +∑ ∑  , (99) 

 
it is possible to define 

 
1

; 1
n

l l l
l

M a M aδ δ
=

= =∑  (100) 

without loss of generality and obtain 

  ( )
1

n
l

R
ll

iaM M M
i
ω

ω δ
ω ω=

= +
+∑  . (101) 

 
The viscoelastic modulus (101) obtained for the GZB (H-p-M), Fig. 4, is exactly the 
same as it has been obtained by Emmerich and Korn (1987) for their GMB-EK, Fig. 3. 
Obviously, ( )M ω  for the GZB (H-s-KV) would be the same. It is also easy to rewrite 

the non-simplified ( )tψ  for the GZB, eq. (91), into the form of ( )tψ  for the GMB-EK, 
eq. (86), without any simplification. In other words, the rheology of the GMB-EK and 
GZB is one and the same. As a consequence, the GMB-EK will be used in the 
following. 
 
 

Introduction of the Anelastic Functions (Memory Variables) – the 1D Case 
 
In order to focus on the essential aspects of the implementation of the realistic 
attenuation in the time-domain computations, we continue by considering the 1D case 
with one stress and one strain component. Using the unrelaxed modulus, the 
viscoelastic modulus (101) and relaxation function (86) are rewritten as 
 

    ( ) ( ) ( ) ( )
1 1

, 1 l

n n
tl l

U U l
ll l

aM M M t M M a e H t
i

ωω
ω δ ψ δ

ω ω
−

= =

⎡ ⎤
⎢ ⎥= − = − − ⋅⎢ ⎥+ ⎢ ⎥⎣ ⎦

∑ ∑ . (102) 

 
The time derivative of the relaxation function (time-dependent modulus) is 
 

    ( ) ( ) ( ) ( )
1 1

( ) 1l l

n n
t t

l l U l
l l

M t t M a e H t M M a e tω ωψ δ ω δ δ− −

= =

⎡ ⎤
⎢ ⎥= =− ⋅ + − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑� . (103) 
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Inserting eq. (103) into eq. (75) yields 
 

 ( ) ( ) ( ) ( )

1

l

tn
t

U l l
l

t M t M a e dω τσ ε δ ω ε τ τ− −

= −∞

= ⋅ − ⋅∑ ∫  . (104) 

 
The convolution integral can be replaced by additional functions (internal variables, 
new variables, memory variables, anelastic functions). While Day and Minster (1984), 
Emmerich and Korn (1987), and Carcione et al. (1988a, b) defined the additional 
functions as material-dependent, Kristek and Moczo (2003) defined their anelastic 
functions as material-independent (the reason will be explained later): 
 

 ( ) ( ) ( ) , 1,...,l

t
t

l lt e d l nω τζ ω ε τ τ− −

−∞

= ⋅ =∫ . (105) 

 
The stress-strain relation then becomes 

 ( ) ( ) ( )
1

n

U l l
l

t M t M a tσ ε δ ζ
=

= ⋅ −∑  . (106) 

 
Equations necessary to solve for the anelastic functions are easily obtained by taking 
the time derivative of eq. (105): 
 

 ( ) ( ) ( ) ( ) ( )l

t
t

l l l l
dt e d t t
dt

ω τζ ω ε τ τ ω ζ ε− −

−∞

⎡ ⎤= ⋅ = − +⎣ ⎦∫�  (107) 

and 
 
 ( ) ( ) ( ) ; 1,...,l l l lt t t l nζ ω ζ ω ε+ = =� . (108) 
 
Eqs. (106) and (108) define the time-domain stress-strain relation for the viscoelastic 
medium whose rheology corresponds to the rheology of the GMB-EK (and to its 
equivalent – the GZB). If the staggered-grid velocity-stress FD scheme is to be used, 
then the time derivative of the stress is needed. It is easy to obtain 
 

 ( ) ( ) ( )
1

n

U l l
l

t M t M a tσ ε δ ξ
=

= ⋅ −∑��  (109) 

and 
   ( ) ( ) ( ) ; 1,...,l l l lt t t l nξ ω ξ ω ε+ = =� �  . (110) 
 

As mentioned before, formalism developed specifically for the GZB was used in 
many papers. Therefore we give here equations equivalent to those presented by 
Robertsson et al. (1994). Using eqs. (91), (74), (78) and (90) it is easy to obtain 
 

 ( ) ( ) ( )
1

n

U l
l

t M t r tσ ε
=

= ⋅ − ∑��  , (111) 
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 ( ) ( ) ( )1 exp , 1,...,
t

Rl l
l l

l l

Mr t t d l nε
σ

σ σ

τ ε τ τ τ τ
τ τ

−∞

⎛ ⎞⎟⎜ ⎡ ⎤⎟= − ⋅ − − =⎜ ⎟ ⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠ ∫ � , (112) 

 

 ( ) ( ) ( )1 1 , 1,...,Rl l
l l

l l l

Mr t r t t l nε

σ σ σ

τ
ε

τ τ τ

⎛ ⎞⎟⎜ ⎟+ = − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
�� . (113) 

 
Note that anelastic functions (memory variables) ( )lr t  are material-dependent. 

Defining anelastic coefficients (different from those used by Emmerich and Korn, 
1987) 
 
   ; 1,...,l l UY a M M l nδ= =  , (114) 
 
the stress-strain relations (106) and (109) become 
 

     ( ) ( ) ( ) ( ) ( ) ( )
1 1

,
n n

U U l l U U l l
l l

t M t M Y t t M t M Y tσ ε ζ σ ε ξ
= =

= ⋅ − = ⋅ −∑ ∑��  . (115) 

 
The related eqs. (108) and (110) remain unchanged. 

It is clear that the stress or its time derivative can be calculated if the anelastic 
coefficients and unrelaxed modulus are known. 

The anelastic coefficients ; 1,...,lY l n= have to be determined from ( )Q ω -law. 
Using the anelastic coefficients, the viscoelastic modulus and quality factor (81) are 
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1
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ll
M M Y

i
ω

ω
ω ω=
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and 
 

   
( )

2

2 2 2 2
1 1

1 1
n n

l l
l l
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Y Y

Q
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ω ω ω ω ω= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  . (117) 

 
Eq. (117) yields 
 

 ( ) ( )2 1
1

2 2
1

n
l l

l
l l

Q
Q Y

ωω ω ω
ω

ω ω

−
−

=

+
=

+∑ . (118) 

 
Eq. (118) can be used to numerically fit any ( )Q ω -law. A sufficiently accurate 

approximation to nearly constant ( )Q ω  is obtained if the relaxation frequencies lω  are 
distributed logarithmically equidistant over the frequency range of interest. If, for 
example, ( )Q ω  values are known at frequencies ; 1,..., 2 1k k nω = −� , with 

1 1 2 1, n nω ω ω ω−= =� �  , eq. (118) can be solved for ; 1,...,lY l n= using the least square 
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method. A more detailed discussion of the frequency range and its sampling at 
frequencies kω�  can be found in the papers by Blanch et al. (1995) and Graves and Day 
(2003; eqs. 13 and 14). 

If an elastic P-wave velocity α  or S-wave velocity β  is known, then, in the 
considered 1D problem, 2

UM ρα=  for the P-wave or 22UM ρ β=  for the S-wave. 
In practice, a phase velocity at a certain reference frequency rω  can be measured or 
estimated. The P-wave or S-wave phase velocity ( )c ω  is given by 

 

   ( ) ( ){ }1 21 Rec Mω ω ρ
−⎡ ⎤= ⎣ ⎦  . (119) 

 
It follows (Moczo et al., 1997) from eqs. (116) and (119) that 
 

   ( ) ( )1 22 2 21
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RM c R
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Θ Θ
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( ) ( )1 22 2
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11 , .
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n n
r l

l l
l lr l r l

Y Y ω ω
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= =
= − =

+ +
∑ ∑  (121) 

 
As already pointed out, a constant or almost constant Q  is of great importance. 

Therefore, Blanch et al. (1995) addressed the question of an efficient and sufficiently 
accurate curve-fitting procedure in the case of constant Q . Their τ -method is based on 
the fact that the level of attenuation caused by a ZB can be determined by a 
dimensionless variable ( )ε σ στ τ τ τ= − . Blanch et al. (1995) derived explicit closed 
formula to determine parameters of the GZB for a desired constant Q , for P- and S- 
waves, respectively. The GZB obtained by tuning through a single parameter τ  yields a 
very good constant-Q  approximation. 
 
 

A FD Scheme for the Anelastic Functions in the 1D Case 
 

The 2nd-order approximations to the anelastic functions lζ  and ; 1,...,l l nζ =�  give 
 

   ( ) ( )1
1/ 2 1/ 2 1/ 2 1/ 22

1( ) ( ) ( ) , ( ) ( ) ( )l m l m l m l m l m l mt t t t t t
t

ζ ζ ζ ζ ζ ζ
Δ+ − + −= + = −�� � , (122) 

 
where mt  denotes the m-th time level. Then each of the equations for the anelastic 
functions can be solved by 
 

  1/ 2 1/ 2
2 2( ) ( ) ( )

2 2
l l

l m m l m
l l

t tt t t
t t

ω ωζ ε ζ
ω ω+ −
Δ − Δ= +

+ Δ + Δ
 . (123) 

 
The value of ( )l mtζ  needed in the stress-strain relation 
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  ( ) ( ) ( )
1

n
M

m U m U l l m
l

t M t M Y tσ ε ζ
=

= ⋅ − ∑  , (124) 

 
is obtained from 1/ 2( )l mtζ −  and 1/ 2( )l mtζ +  using eq. (122). This means that two values 
have to be kept in memory for one spatial position at one time. It is, however, possible 
(Kristek and Moczo, 2003) to avoid the necessity to keep in memory both values.  It 
follows from eqs. (123) and (122) that 
 

 1/ 2
2( ) ( ) ( )

2 2
l

l m m l m
l l

tt t t
t t

ωζ ε ζ
ω ω +
Δ= − +

− Δ − Δ
 . (125) 

 
Then the stress-strain relation (124) can be obtained in the form 
 

 ( ) ( ) ( )1/ 2
1

n
M

m m l l m
l

t M t Y tσ ε ζ +
=

= − ∑� �  (126) 

where 

 
1 2
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1 2
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2, .
2 2
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l l

l l

M M G Y Y G M Y

tG G
t t

ω
ω ω

=

⎛ ⎞⎟⎜ ⎟= + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
Δ= =

− Δ − Δ

∑� �

 (127) 

 
Using scheme (123) and a proper scheme for eq. (126) it is sufficient to have only one 
variable for one anelastic function at one grid position at one time. In the case of the 
staggered-grid velocity-stress FD scheme, the form of equations is the same; only lζ  
and ε  have to be replaced by lξ  and ε�  , respectively. 

 
 

A Material Discontinuity in the Viscoelastic Medium – the 1D Case 
 

It is not a trivial task to find a heterogeneous formulation to the differential problem if 
the stress is given in the form of eq. (115). Kristek and Moczo (2003) suggested an 
approximate approach which has been shown sufficiently accurate using numerical tests 
against the discrete wavenumber method (Bouchon, 1981; Coutant, 1989). 

Consider a contact of two viscoelastic media with the GMB-EK rheology. Each of 
the two media is described by a real density and complex frequency-dependent modulus 
given by eq. (116). The question is how to determine density, elastic (unrelaxed) 
modulus UM , and anelastic coefficients ; 1,...,M

lY l n=  for an averaged medium that 
should represent the contact of two media (that is the boundary conditions at the 
interface between the two media) if a material discontinuity goes through a grid cell. 
There is no reason to consider other than volume arithmetic averaging for the density 
using formula (56). An averaged viscoelastic modulus M  can be obtained by 
numerical averaging in the frequency domain over the grid cell. From the averaged 
viscoelastic modulus, the quality factor corresponding to this modulus can be 
determined, eq. (81), for example, at frequencies ; 1,..., 2 1k k nω = −� : 
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( ) ( ) ( )Re Imk k kMQ M Mω ω ω=� � � . Assuming that the rheology of the averaged 
medium can be approximated by the GMB-EK rheology, the anelastic coefficients 

; 1,...,M
lY l n=  for the averaged medium can be obtained using eq. (118).  

It follows from eq. (79) that ( )limUM M
ω

ω
→∞

= . An implication is that, in the limit, 

the averaging of the viscoelastic modulus gives the averaging of the unrelaxed 
modulus. This means that the unrelaxed (elastic) modulus UM  for the averaged 
viscoelastic medium can be obtained in the same way as in the perfectly elastic 
medium. 
 
 

A Summary of Equations in the 3D Case 
 

In the 3D case it is assumed that the rheology of the medium is described by one GMB-
EK (or, equivalently, GZB) for the complex frequency-dependent bulk modulus and 
one GMB-EK for the complex frequency-dependent shear modulus. The stress-strain 
relation is (Kristek and Moczo, 2003) 
 

  ( ) ( )1 1
3 32 2

n
k k i j k k

i j k k i j i j k k i j l i j i jl l l l
l

Y Yκ μσ κ ε δ μ ε ε δ κ ζ δ μ ζ ζ δ⎡ ⎤= + − − + −⎢ ⎥⎣ ⎦∑         

(128) 
 
where { }, , 1, 2,3i j k ∈ , the equal-index summation convention does not apply to l, 

( )ixκ  and ( )ixμ  are unrelaxed (elastic) bulk and shear moduli, and lYκ  and lY μ  are the 

corresponding anelastic coefficients. Assuming a measured or estimated ( )Qα ω  for the 

P- and ( )Qβ ω  for the S-waves, the corresponding anelastic coefficients lYα  and lY β  

are obtained using eq. (118). Then the anelastic coefficients lYκ  and lY μ  are 
 
    ( ) ( )2 2 2 24 4

3 3 , ; 1,..., .l l l l lY Y Y Y Y l nκ α β μ βα β α β= − − = =  (129) 

 
There are n material-independent anelastic functions i j

lζ for each of 6 strain-tensor 
components satisfying equations  
 
 ; 1,...,i j i j

l l i jl l l nζ ω ζ ω ε+ = =�  , (130) 
 
where the equal-index summation convention does not apply to l. 

While eqs. (128) and (130) are applicable to the conventional displacement, or 
staggered-grid displacement-stress and displacement-velocity-stress FD schemes, 
equations 
 

    ( ) ( )1 1
3 32 2

n
k k i j k k

i j k k i j i j k k i j l i j i jl l l l
l

Y Yκ μσ κ ε δ μ ε ε δ κ ξ δ μ ξ ξ δ⎡ ⎤= + − − + −⎢ ⎥⎣ ⎦∑� � ��    (131) 

and 
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 ; 1,...,i j i j
l l i jl l l nξ ω ξ ω ε+ = =� �  (132) 

 
are needed for the staggered-grid velocity-stress FD schemes. 

In analogy to the 1D case, it is possible to obtain 
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and 
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l m i j m m i jl l l l
l

t t t t

Y t Y t tκ μ

σ κ ε δ μ ε ε δ

ζ δ ζ ζ δ+ + +
=

= + − −

⎡ ⎤+ −⎢ ⎥⎣ ⎦∑

� �

� �
 (134) 

 
where 
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= =
Δ= =

− Δ − Δ

∑ ∑� �

� �  (135) 

 
Eqs. (133) to (135) are ready for programming. In the case of the staggered-grid 
velocity-stress FD scheme, the form of equations is the same; only i j

lζ  and i jε  are 

replaced by i j
lξ  and i jε� . 

 
 

Coarse Spatial Sampling 
 
The incorporation of realistic attenuation considerably increases the number of 
operations and variables/parameters that have to be kept in computer (core) memory. In 
order to reduce the increased memory requirements and also computational time, Zeng 
(1996), independently Day (1998) and Day and Bradley (2001) introduced coarse 
spatial sampling of the anelastic functions and coefficients. In Day’s (1998) approach, 
one anelastic function i j

lξ  for one relaxation frequency lω  is distributed with a spatial 
period of 2h , h  being a grid spacing. Consequently, 8n= . Considering, for example, 
location of the stress-tensor component zxT  at 8 corners of a grid cube h h h× ×  , only 
one of the 8 z x

lξ  anelastic functions is assigned to one of the 8 corners  (say, 1
zxξ  is 

assigned to one position, 2
zxξ  to other position, and so on). Consequently, the total 

number of ; 1, 2,...,8z x
l lξ =  in the whole grid is 8

2 2 2
MX MY MZ MX MY MZ⋅ ⋅ ⋅ = ⋅ ⋅ , 

MX, MY and MZ being the numbers of the grid cells in the three Cartesian directions. 
Because there are 6 independent stress-tensor components, the total number of all the 
anelastic functions in the whole grid is 6MX MY MZ⋅ ⋅ ⋅ . Since the anelastic 
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coefficients lYκ  and lY μ  at the grid positions of the normal stress-tensor components, 

and  xy
lY μ , yz

lY μ  and zx
lY μ  at the grid positions of the shear stress-tensor components 

are distributed in the same coarse manner, the total number of the anelastic coefficients 
in the grid is 5MX MY MZ⋅ ⋅ ⋅ . Thus, the additional memory due to attenuation in Day’s 
(1998) approach in the staggered-grid scheme in the case of 8 relaxation frequencies is 
equivalent to the case of just one relaxation frequency without coarse sampling, which 
is significant. 

Graves and Day (2003) analyzed stability and accuracy of the scheme with the 
coarse spatial sampling and defined the effective modulus and the quality factor 
necessary to achieve sufficient accuracy. 

As discussed earlier, Moczo et al. (2002) demonstrated that a position of a material 
discontinuity within one grid cell can be sensed by a sufficiently accurate FD scheme. 
In a structurally complex model there are material discontinuities going through grid 
cells in different orientations with respect to the coordinate system. In such a case and 
with the originally suggested spatial sampling (Day, 1998; Day and Bradley, 2001) it 
can happen that the medium from one side of the material discontinuity is characterized 
over one half of the whole considered frequency range while the medium from the other 
side of the discontinuity is characterized over the other half of the considered frequency 
range. Since the behavior of the two media in contact is characterized in two disjunctive 
frequency sub-intervals, the two media cannot physically interact. Consequently, the 
two media cannot be averaged. 

In principle, the geometry of the coarse spatial sampling shown in the papers by 
Day (1998) and Day and Bradley (2001) is not the only one possible. Keeping the same 
spatial periodicity of the anelastic quantities, it is possible to avoid division of a grid 
cell into two parts characterized in two disjunctive frequency sub-intervals. Still the 
best possible alternative situation would be characterization of one medium in contact 
using, for example, relaxation frequencies 1 3 5 7, , ,ω ω ω ω  and characterization of the 

other medium in contact using 2 4 6 8, , ,ω ω ω ω , which again is not satisfactory. 
In evaluating the sum that makes an anelastic term in the stress-strain relation, eqs. 

(128), (131) or (134), at a given spatial grid position, it would be possible to account for 
the anelastic coefficients and functions which are not located at that grid point by their 
properly weighted values. Such averaging, however, poses a problem: Because the 
anelastic functions (that is, internal variables or memory variables) introduced by Day 
and Minster (1984), Emmerich and Korn (1987), Carcione et al. (1988a, b) and 
Robertsson et al. (1994) are material-dependent, any such spatial averaging (accounting 
for the functions missing at the considered grid point) would introduce and additional 
artificial averaging of the material parameters. There is no reason for such an additional 
averaging. 

There would be no problem with the coarse spatial sampling and at the same time 
with weighted spatial averaging of the anelastic functions at a grid point with only one 
of the all anelastic functions if the anelastic functions were material-independent. 
Therefore Kristek and Moczo (2003) introduced material-independent anelastic 
functions (as given above). Moreover, they also suggested an alternative coarse spatial 
distribution of the anelastic functions which only requires 4n=  relaxation frequencies, 
keeping the same memory requirements as in Day (1998), and Day and Bradley (2001). 
The distribution is shown in Fig. 5. Kristek and Moczo (2003) demonstrated accuracy 
of their FD scheme with the material-independent anelastic functions and new coarse 
distribution of the anelastic functions. 
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Incorporation of Attenuation in Anisotropic Media 

 
FD modeling in anisotropic media is addressed in the following section. Here we only 
point out the main difference between incorporating attenuation in the isotropic and 
anisotropic media. In the isotropic medium it is possible to consider that the rheology of 
the medium is described by two separate viscoelastic bodies – one for the complex 
frequency-dependent bulk modulus (corresponding to the dilatational part of the strain) 
and one for the complex frequency-dependent shear modulus (corresponding to the 
deviatoric part of the strain). In terms of the quality factors for P- and S-waves, the 
quality factors can be strictly separated. This makes the incorporation of the attenuation 
in the isotropic medium much easier compared to the anisotropic medium, where the 
two quality factors cannot be simply separated if they are not equal. 

Robertsson and Coates (1997) presented a 2D velocity-stress staggered-grid FD 
scheme for modeling qP- and qS wave propagation in anisotropic media based on the 
rheological model described by Carcione and Cavallini (1994). Through eigenvalue 
decomposition of the stress and stiffness tensors, relaxation functions and memory 
variables are associated with the so-called eigenstiffness and eigenstresses. The 
decomposition of stresses and stiffness in this fashion was first observed by Lord 
Kelvin (Thomson, 1856). 

 
 

 
 
 
Figure 5.  Coarse spatial distribution of grid cells and anelastic functions. The 

number on a cell face indicates the relaxation frequency of the anelastic 
functions localized in the cell. For example, grid cell 1 contains 

1 1 11 1 1, , , , ,xx yy zz xy yz zxξ ξ ξ ξ ξ ξ . Reproduced from Kristek and Moczo (2003). 
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Anisotropic Media 
 
FD modeling of wave propagation in anisotropic media has attracted limited attention 
as the main focus of both applied and academic studies has been on wave propagation 
in isotropic heterogeneous models. However, a need for modeling of anisotropic wave 
propagation arises not only from modeling of wave propagation in truly anisotropic 
materials such as for instance aligned anisotropic crystals in the upper mantle or shales, 
but also from wave propagation in an equivalent anisotropic medium, see eq. (65). An 
equivalent anisotropic medium is a low-frequency approximation for wave propagation 
in heterogeneous isotropic media (Backus, 1962; Helbig, 1984). An equivalent 
anisotropic medium can be used to represent for instance fine-scale layering or 
heterogeneity on a coarse scale appropriate for the scale of discretization of the FD 
modeling grid.  Methods to compute equivalent anisotropic media are well known in 
1D (Schoenberg and Muir, 1989) and can applied to FD modeling of smooth interfaces 
in 2D and 3D (Muir et al., 1992; Moczo et al., 2002). An equivalent anisotropic 
medium can also be used for modeling of wave propagation through stress induced 
cracked materials, where equivalent homogeneous anisotropic material represents 
average orientation and size of cracks (e.g., Crampin and Chastin, 2003). A general 
equivalent medium theory for 3D heterogeneous media is a formidable challenge and 
still a topic of research (and likely to remain one for quite some time). 

Another reason for the limited use of FD modeling in anisotropic media is the lack 
of suitable formulation of anisotropic finite differencing. Whereas the conventional-grid 
schemes allow modeling of arbitrary anisotropic propagation, they may become 
unstable at fluid/solid boundaries (among other problems). The staggered-grid schemes 
are stable at fluid/solid boundaries but wave propagation in general anisotropic media is 
significantly more difficult. For example, Hooke’s law for the general anisotropic 
medium has the form 

,i j i jk l k lc uσ =  . 
 

Tensor of elastic constants i j k lc  is symmetric in i and j, k and l, ij and kl indexes. The 

stress tensor i jσ  requires evaluation of terms such as 1112 1 2,c u . Fig. 6 illustrates that the 

derivative of 1u  along the 2nd axis is not centered on the stress component 11σ . In fact, 
in 3D anisotropic media all derivatives with coefficients 
 

1112 1113 1123 2212 2213 2223 3312 3313 3323 2313 2312 1312, , , , , , , , , , ,c c c c c c c c c c c c  
 

are not centered on the corresponding stress components with the standard staggered-
grid formulation. Therefore only wave propagation in an orthorhombic anisotropic 
medium with axis of symmetry aligned along the Cartesian coordinate system does not 
require any interpolation and is easily implemented.  Neglecting the shift of the 
derivatives for a generally anisotropic medium introduces significant errors. Igel et al. 
(1995) therefore proposed interpolation operators that shift the derivatives to the 
corresponding stress positions on the staggered grid. Analogously to the differential 
operators, the higher-order interpolation operators are more accurate, but require more 
floating point operations. In fact the interpolation significantly increases the number of 
operations at every time-step. In general anisotropic media we must carry out 15 
interpolations (12 for every coefficient shown above and three of these coefficients 
require interpolations in two directions), which leads to a substantial increase in terms 
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of computational cost. For example, the 3D second-order staggered pressure-velocity 
scheme, with no attenuation and no source representation, requires 16 floating-point 
operations per time-step for acoustic media. Analogously, the partly-staggered grid 
(discussed below) formulation (stress-velocity) requires 51 operations for an isotropic 
elastic medium and 81 operations per time-step for an anisotropic medium (without the 
cost interpolation required for staggered grids). The cost of interpolation operators in 
anisotropic media leads to an increase in the number of operations by 500 or more 
operations per time step (the number of float operations depends on particular 
implementation as some of the intermediate variables can be stored and reused for 
further calculations; if no intermediate variables are reused, each interpolation requires 
55 operations for the fourth-order interpolation operator). The total number of 
operations per grid points is therefore on the order of 600 for the 3D anisotropic case.  
In other words, anisotropic finite differences on staggered grids are approximately 50 
times slower (per time step) than acoustic modeling, and more than 15-20 times slower 
than isotropic modeling. Note that in addition as elastic simulations typically require 
shorter time steps and larger simulation times to propagate S-waves thus making 
acoustic modeling comparably even more computationally inexpensive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Staggered grid in 2D. xV  and zV  are the particle displacement/velocity 

components, xxT , zzT  and zxT  are the stress-tensor components. 
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A FD formulation on a partly-staggered grid, originally developed for isotropic 

wave propagation (Andrews, 1973 and Zhang, 1997), was successfully applied to 
anisotropic wave propagation by Saenger and Bohlen (2004) (they used term rotated 
staggered). The formulation combines features of the conventional and staggered-grid 
schemes. In a grid cell, all stress-tensor components are located at one grid position, all 
displacement or particle-velocity components are located at other grid position. 
Numerical analysis of the stability condition shows that the formulation is stable for 
fluid/solid boundaries. For anisotropic finite-differences on the partly-staggered grid the 
calculation is roughly only 60% slower than isotropic modeling and the relative cost 
further decreases with the higher-order space derivative operators that are used as both 
types of media require the same number (18) of spatial derivatives (e.g., for the popular 
4th-order in space and 2nd-order in time formulation, the anisotropic calculation requires 
only 35% additional computations). This comparison illustrates that there is no 
significant saving in computational cost by modeling only restricted degrees of 
anisotropy on the partly-staggered grid (e.g., modeling only orthorhombic versus fully 
anisotropic media). Although the partly-staggered grid appears to have some quite 
attractive properties it is not widely used today and the properties of the partly-
staggered-grid FD schemes, such as stability for various qP-to-qS wave speeds ratio 
and interfaces, have to our knowledge not been fully analyzed and tested.  Further 
research is therefore required before adapting the partly-staggered grid formulation 
instead of the standard staggered-grid formulation introduced by Madariaga (1976) and 
Virieux (1984) that we focus on in our chapter. 

Next we shall derive numerical stability conditions for a FD approximation that is 
2nd-order accurate in time and of arbitrary order accuracy in space (von Neuman 
condition; O’Brien et al., 1951) for wave propagation in a fully anisotropic 
homogeneous medium. We shall follow the derivation of numerical stability by Crase 
(1990), Igel et al. (1995), and Saenger and Bohlen (2004). The stability conditions for 
anisotropic heterogeneous media are evaluated by stability of the equivalent 
homogeneous medium.  

The velocity-stress formulation of the equation of motion for a general anisotropic 
medium is (without the body-force term), eqs. (8),  
 

 
,

, .
i i j j

i j i jk l k l

v

c v

ρ σ

σ

=

=

�

�
 

 
An approximation to the time derivatives yields 
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( )
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Δ

Δ

⎡ ⎤+ − − = ∂ ⎢ ⎥⎣ ⎦

⎡ ⎤− − = ∂ −⎣ ⎦

�

�
 (136) 

 
Here, i ix∂ =∂ ∂ . Taking the plane-wave ansatz, i.e., a harmonic wave 

( )( , ) expi i j ju t k A i t k xω⎡ ⎤= −⎢ ⎥⎣ ⎦ , k k=
G

 being a wavenumber, which satisfies the 

elastodynamic equation, we can rewrite eq. (136) to contain only particle velocity at 
one time: 
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 ( ) ( ){ }2 2 14sin , , , , , ,
2 i j i j k l l k

t v I J K m t c v I J K mω
ρ

Δ
Δ

⎛ ⎞⎟⎜ ⎡ ⎤− = − ∂ ∂⎟⎜ ⎣ ⎦⎟⎟⎜⎝ ⎠
. (137) 

 
The spatial operators on r.h.s. of eqs. (137) are also discretized. The ansatz solution for 
the harmonic wave in a homogeneous anisotropic medium allows analytical evaluation 
of the FD approximation to the real wavenumber (note that we ignore the issue of 
interpolation here): 
 

 
/ 2

1

2 2 1sin
2

SN

i i n i i
i n

nk p k x
x

Δ
Δ =

⎛ ⎞− ⎟⎜∂ = = ⎟⎜ ⎟⎟⎜⎝ ⎠∑�� , (138) 

 
where k�  is the numerical wavenumber, ixΔ  grid spacing in the ix -direction, SN  the 
order of the spatial operator, and np  the coefficients of the spatial operator. Now we 
can evaluate complete discretized eqs. (137) for the ansatz solution and obtain the 
following expression for the angular frequency: 
 

 ( )
1 222 1arcsin ,

2 2 q r i jk l
t k c

t
ω λΔ

Δ

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

� . (139) 

 
Here pλ  are diagonal elements of the matrix 
 

 1
ik j i jk l lD k c k

ρ
= � � . (140) 

 
If the expression under the square root in eq. (139) is greater than one or less than zero, 
the numerical angular frequency is not real and the FD scheme becomes unstable 
(because the operator on particle velocity of eq. (137) is unstable). Thus a general 
condition for stability of the FD approximation is 
 

 
2

0 ( , ) 1
4 q r i jk l
t k cλΔ≤ ≤�  . (141) 

 
To evaluate stability condition (141) we need the eigenvalues of the matrix (140). To 
evaluate these we bound the FD wavenumbers of eq. (138) by  
 

 
/ 2

1

2 SN

i n
i n

k p
xΔ =

≤ ∑� , (142) 

 
and evaluate eigenvalues of the FD operator (140). In isotropic media the conditions 
(139-140) can be evaluated analytically and they correspond to the CFL condition (e.g., 
Mitchell and Griffiths, 1994, p. 167; Taflove and Hagness, 2005, p. 42). The analytic 
solution exists for isotropic homogeneous media where stability condition (141) is 
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αΔ
Δ= =

⎛ ⎞⎟⎜ ⎟⎜≤ − − ≤⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ ∑  , (143) 

 
where α  is the P-wave velocity. The condition is valid for both P- and S-wave 
velocities, but P-wave velocity imposes a stricter constraint as it is larger than the S-
wave velocity. However, for a general anisotropic medium the stability condition (141) 
has to be evaluated numerically. 
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Free Surface 
 

Traction-free Boundary Condition 
 

In exploration and earthquake seismology recordings are often made at or close to the 
Earth’s surface. In most seismological applications, the air/fluid (ocean) or air/solid 
(land) interface can be thought of as a free surface where a fluid or solid abruptly 
terminates and is replaced by vacuum, that is, the Earth’s surface may be approximated 
by a surface with vanishing traction. Let the surface S with normal vector nJG  define the 
geometry of the Earth’s surface. Let ( )

G G G
,T u n  be the traction vector corresponding to 

the displacement vector uG and normal vector nJG . The traction-free condition is 
 
  ( ), 0T u n =

G G G  . (144) 
 
A real location for the seismic recordings can be affected by at least two significant 
factors causing a large impact on wave propagation that must be modeled or understood 
in many applications. Apart from the fact that the near-surface medium structure may 
be highly complex with large velocity variations (e.g., Eisner and Clayton, 2002), the 
free surface itself may display significant topographic variations. At the same time, the 
FD method inherently has difficulty to implement traction boundary condition. 
Therefore the accuracy and efficiency of the free-surface approximation are key issues 
in FD modeling of seismic wave propagation and earthquake motion. 

Though, in principle, the same free-surface boundary condition should be simulated 
for planar and non-planar (topographic) free surfaces, due to the definition of the FD 
method and unlike, for example, the finite-element method, the implementation of the 
traction-free condition in the case of topography is a considerably more difficult 
problem. This is also reflected in the recent development. Therefore, the two 
geometries will be addressed separately. 
 
 

Planar Free Surface 
 
Let the surface S be a planar free surface at 0z=  with the unit normal vector 
( )0,0, 1n = −G . Then  

 
 { }0 , , ,z x y zησ η= ∈  (145) 
 
is the desired boundary condition at the horizontal (flat) free surface. 

Recall the 4th-order approximation to the 1st derivative used in the staggered-grid 
FD schemes for interior grid points. The 1st derivative of a function ( )ξΦ  at 0ξ ξ=  is 
approximated by eq. (5) 
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with 1 24a=− , 9 8b=  and h being a grid spacing. Evaluation of the z-derivative of a 
function at 0z=  then requires the function values at positions / 2h−  and 3 / 2h−  
above the free surface. Similarly, evaluation of the z-derivatives of a function at 

2z h=  and z h=  requires values at z h=−  and 2z h=− , respectively. This 
implies two principal possibilities: 
- the application of the FD scheme for the interior grid points with the field or material 
parameters somehow defined above the free surface, 
- the application of a different, say, adjusted, FD scheme which does not require any 
values above the free surface. 
Obviously, for the same reason which makes the heterogeneous schemes easier to use 
than the homogeneous ones, the first approach is preferable. 

The first approach either leads to the so-called vacuum formalism, medium taper or 
imaging method. The vacuum formalism applies zero moduli above the free surface. 
While this approach gives good accuracy in the displacement formulation, e.g., 
Zahradník and Priolo (1995) in 2D, Moczo et al. (1999) in 3D, Graves (1996) and other 
authors did not find the approach satisfactory in the staggered-grid modeling. A density 
taper was used by Frankel and Leith (1992) in their conventional-grid displacement FD 
scheme. 
 
 

Stress Imaging 
 

The stress imaging was introduced by Levander (1988) in his 2D P-SV 4th-order 
staggered-grid velocity-stress FD scheme. The stress-imaging technique applies explicit 
boundary conditions to the stress-tensor component(s) located at the grid plane 
coinciding with the free surface, and uses imaged values of the stress-tensor 
components above the free surface assuming their antisymmetry about the free surface. 
The antisymmetry 
 
 ( ) ( ) { }; , ,z zz z x y zη ησ σ η− = − ∈  (146) 
 
ensures that the boundary condition given by eqs. (145) are satisfied. 

As summarized by Robertsson (1996), there are three possibilities for treating the 
displacement or particle-velocity values formally required by the FD scheme: 
1. The values are calculated using the 2nd-order approximations to the boundary 
condition and imaged stress-tensor components. The approach was used by Levander 
(1988), Graves (1996), Kristek et al. (2002) and others. 
2. The values are mirrored as even values with respect to the free surface. The approach 
was used by Crase (1990) and Rodrigues and Mora (1993). As pointed out by 
Robertsson (1996), the even values of the particle velocity values violate the boundary 
conditions. 
3. The values are set to zero. This was proposed by Robertsson (1996). 

Given the staggered grid, there are two natural options for locating the free surface. 
In one, say H formulation, the horizontal displacement or particle-velocity components, 
and stress-tensor components Txx, Tyy, Tzz and Txy are located at the free surface. In the 
other, say W formulation, the vertical displacement or particle-velocity component and 
Tzx and Tzy are at the free surface. Rodrigues (1993) developed a 3D 8th-order staggered-
grid displacement-stress scheme and used the stress-imaging technique in the H 
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formulation. He found that it is necessary to use more than twice the number of grid 
points compared to inside the medium in order to avoid a significant numerical 
dispersion. Therefore, he combined the stress-imaging technique with a vertically 
refined grid near the free surface and achieved good accuracy. Kristek et al. (2002) 
numerically tested both the H and W formulations of the stress-imaging technique 
against the discrete-wavenumber method. They demonstrated that in the 3D case the 
stress-imaging technique in the 4th-order FD modeling requires at least twice as many 
grid points per wavelength compared to what is sufficient inside the medium if the 
Rayleigh waves are to be propagated without significant grid dispersion even in the 
case of the simple homogeneous halfspace. They also tested the 4th-order version of the 
Rodrigues (1993) approach. While sufficiently accurate, the approach needs three times 
smaller time step (the factor of 3 is due to the most natural refinement of the staggered-
grid). 

It is obvious that either at least twice denser spatial sampling or three times smaller 
time step degrade the efficiency of the 4th-order staggered-grid modeling inside the 
medium. 
 
 

Adjusted FD Approximations (AFDA) 
 
The principle of the AFDA technique used by Kristek et al. (2002) is simple. The 
technique 
1. directly prescribes zero values of zzσ  at the free surface in the H formulation or zxσ  
and zyσ  in the W formulation, 
2. applies adjusted FD approximations to calculate the z -derivatives at the grid points 
at the free surface and depths / 2h  and h ; the adjusted approximation uses only 
function values in the medium. 
As a consequence, no imaged (virtual) values above the free surface are needed. Kristek 
et al. (2002) showed that while H-AFDA results in slightly better phases, W-AFDA 
results in better amplitudes. They concluded with the recommendation to use W-AFDA 
for earthquake ground motion modeling. The calculation of the stress-tensor and 
displacement components in W-AFDA can be summarized as follows (if the velocity-
stress formulation is considered, displacement components are simply replaced by the 
particle-velocity components): 

 
1. Direct application of the boundary condition: 
( ) ( )0 0, 0 0zx zyT T= =  

 
2. The following 4th-order FD approximations are used to calculate the stress-tensor and 
displacement vector components: 
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 (147) 
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 (148) 
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 (150) 

 
 
a.)  The calculation of the stress-tensor components: 
( )2xxT h  is obtained from the 4th-order FD approximation to Hooke’s law for xxσ ; 

derivative ,z zu  is approximated by formula (148); 
( )2yyT h  and ( )2zzT h  – similar to ( )2xxT h ; 

( )zxT h  is obtained from the 4th-order FD approximation to Hooke’s law for zxσ ; 

derivative ,x zu  is approximated by formula (149) in which ( ), 0x zu  is replaced by ,z xu  

due to condition ( )0 0zxσ = ; 

( )zyT h   is obtained from the 4th-order FD approximation to Hooke’s law for zyσ ; 

derivative ,y zu  is approximated by formula (149) in which ( ), 0y zu  is replaced by ,z yu  

due to condition ( )0 0zyσ = ; 
 
b.)  The calculation of the displacement-vector components: 
( )0W  is obtained from the 4th-order FD approximation to the equation of motion for 

zu ; derivative ,zz zσ  is approximated by formula (147) in which condition ( )0 0zzσ =  
is used; 
( )2U h  is obtained from the 4th-order FD approximation to the equation of motion for 

xu ; derivative ,zx zσ  is approximated by formula (148); 
( )2V h  is obtained from the 4th-order FD approximation to the equation of motion for 

yu ; derivative ,zy zσ  is approximated by formula (148); 

( )W h  is obtained from the 4th-order FD approximation to the equation of motion for 

zu ; derivative ,zz zσ  is approximated by formula (150) in which condition ( )0 0zzσ =  
is used. 
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In the W formulation, displacement component W , and stress-tensor components zxσ  
and yzσ  are located at the free surface. The corresponding grid material parameters are 
evaluated as integral averages in the half grid-cell volumes, that is, the upper half of the 
volume located above the free surface is not taken into account. For example, density 
and unrelaxed moduli are evaluated as 
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Using numerical comparisons against the DWN method, Kristek et al. (2002) 
demonstrated that with the W-AFDA technique it is possible to apply the same spatial 
sampling as inside the medium. Because in many realistic models of the Earth’s interior 
lateral material discontinuities reach the free surface, Moczo et al. (2004a) tested the 
accuracy of the W-AFDA technique against the finite-element method for which it is 
easy and natural to satisfy boundary condition at the free surface. Detailed numerical 
tests demonstrated the sufficient accuracy of the W-AFDA technique in models with 
near-surface material discontinuities and the capability of the FD scheme to ‘see’ the 
true position of the material discontinuities in the spatial grid. 

 
 

Free-surface Topography 
 

Approaches to Model Free-surface Topography 
 

The classification of approaches is similar to that given in the previous section. The 
approaches based on modifying material properties at or in the vicinity of the free 
surface to implicitly satisfy the boundary conditions (e.g., Mittet, 2002; Zahradník and 
Hron, 1992; Zahradník et al., 1993) lend themselves to be generalized to incorporate 
topographic variations without much difficulty. However, they tend to require 
significant spatial oversampling. Frankel and Leith (1992) modeled the topographic 
effects on seismic waves generated at a Russian test site by using a technique where a 
smoothly varying density taper was used to model the transition from vacuum to the 
elastic sub-surface. Ohminato and Chouet (1997) describe one of the first techniques 
implemented in 3D where the exact location of the free surface is chosen such that it 
follows a staircase approximating the topographic surface. In their technique normal 
stresses are never located on the free surface. Instead, the location of the surface is 
chosen such that only the shear stresses which should be zero are at the free surface. 
The free-surface condition is simulated by setting the shear modulus to zero at the free 
surface and all elastic moduli to zero in the vacuum above the free surface. In the 2nd-
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order FD scheme at least 25 grid spacings per minimum wavelength are needed to 
achieve an accurate and stable solution. Pitarka and Irikura (1996) also developed a 
similar method which was applied in 3D to study wave propagation site effects at the 
Kobe-JMA station. 

Robertsson (1996) presented a method of simulating the free surface in staggered-
grid FD modeling. The method is based on stress imaging and also results in a 
staircase-shaped surface approximation to the free-surface topography. By splitting the 
update at each time step in two iterations (in 2D) that contain spatial derivatives in one 
direction only, the imaging conditions can be satisfied also in the case of surface 
topography. The method is relatively simple to implement and yields sufficiently 
accurate results if at least 15-20 grid points are used per minimum wavelength. The 
method has been successfully applied both to land seismic applications (e.g., 
Robertsson and Holliger, 1997; Holliger and Robertsson, 1998) as well as for modeling 
scattering from a rough sea surface (Laws and Kragh, 2002; Robertsson et al., 2006).  

As mentioned above the problem with spatial oversampling the wavefield in the 
vicinity of the free surface by roughly a factor of three can be circumvented by 
introducing a simple grid-refinement scheme in the vicinity of the free surface 
(Rodrigues, 1993; Robertsson and Holliger, 1997). A similar approach was also taken 
by Hayashi et al. (2001). The technique by Robertsson (1996) and its extension by 
Robertsson and Holliger (1997) will be described in the next sub-section. 

Several authors developed approaches to avoid a staircase-shaped free surface. Ilan 
(1977) considered an arbitrary polygonal free surface. Ilan’s technique did not address 
the transition points between the segments of various slopes and required a non-uniform 
grid that decreased accuracy. An improved representation of the arbitrary polygonal 
free surface was developed by Jih et al. (1988). Following a predefined classification 
scheme, the different segments were treated using a one-sided approximation of the 
free-surface condition. Unfortunately, the one-sided difference approximations reduce 
the accuracy of the method such that a significant spatial oversampling is needed. 
Another approach to overcome the “staircase problem,” initially developed by Fornberg 
(1988) and then further developed by a number of authors (Tessmer et al., 1992; 
Carcione and Wang, 1993; Carcione, 1994; Nielsen et al., 1994; Hestholm and Ruud, 
1994; Tessmer and Kosloff, 1994; Hestholm, 1999; Hestholm and Ruud, 2002) is to 
solve the wave equation on a curved grid whose line/surface coincides with the 
topographic surface (or another internal surface). This is achieved by solving the 
equation of motion written in Cartesian coordinates and involves first computing the 
spatial derivatives in the new (conformably mapped) coordinate system (curved grid) 
and then applying the chain rule to calculate the required Cartesian spatial derivatives. 
The main drawbacks of the method are stability problems associated with modeling 
very rough surface topography as well as the computational overhead caused by the 
chain rule (25% in 2D and 50% in 3D according to Komatitsch et al., 1996). 
Komatitsch et al. (1996) therefore proposed solving the equation of motion directly on 
the curved grid and thus avoiding the chain-rule computations. Although the approach 
addresses the computational efficiency, it requires additional memory. 

As the FD method inherently has problems when incorporating the traction-free 
condition, particularly in the case of an arbitrary surface topography, Moczo et al. 
(1997) instead used a hybrid approach where a finite-element solution was used in the 
vicinity of the free-surface topography and a FD solution in the rest of the model. The 
method was shown to work very well and to be accurate and stable. Obviously, in order 
not to loose the computational efficiency it is desirable to minimize the region where 
the finite-element method is applied. 
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A Method for Modeling Surface Topography in 2D 

 
To summarize the discussion above, a completely accurate and efficient technique 
applicable in general to model free-surface topography does not exist. Here we describe 
a relatively robust technique proposed by Robertsson (1996). The method can be 
viewed as a generalization of the stress-imaging method of Levander (1988) (H 
formulation) with one important modification. Instead of updating the particle 
velocities in the vicinity of the free surface such that the free surface condition is 
explicitly satisfied by using second-order accurate difference approximations, the 
particle velocities are simply set to zero above the free surface. Stresses on the other 
hand are imaged such that tractions perpendicular to the free surface always are zero at 
the free surface. The generalization to the viscoelastic case is straightforward since no 
spatial derivatives of the memory variables occur. 
 

 
Figure 7. Staggered FD grid in the vicinity of the free-surface boundary where it 

forms a crest or (left) and a trough (right). The light large squares 
represent the locations of the grid-cells in the sub-surface. The grey grid-
cells are located along the free-surface boundary, which runs exactly 
along the thick black line. All boundary grid-points are classified H-, 
VL-, IL-, OL-, VR-, IR-, or OR-points as described in the text. Within 
the grid-cells, the solid squares represent the xxσ  and zzσ  components, 
the light squares the zxσ  component, the solid circles the xv  component, 
and the light circles represent the zv  component. Reproduced from 
Robertsson (1996). 

 
A description of the staggered grid in the vicinity of the free surface is shown in Fig. 7, 
for a crest and a trough. The free surface is discretized such that all grey grid-cells 
belong to it. It is critical where the boundary is located within the staggered grid-cells 
(see Robertsson, 1996, for a discussion). Numerically, the free surface itself is located 
along the thick black line. The grid-points along the discretized boundary belong to one 
and only one of the seven following categories: (1) horizontal boundary (H); (2) 
vertical boundary with vacuum to the left (VL); (3) inner corner with vacuum above to 
the left (IL); (4) outer corner with vacuum below to the left (OL); (5) vertical boundary 
with vacuum to the right (VR); (6) inner corner with vacuum above to the right (IR); 
and (7) outer corner with vacuum below to the right (OR). 

It is worthwhile to recall the physical meaning of the imaging technique. The 
imaging is carried out to ensure that the normal and shear stresses perpendicular to the 
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boundary under consideration ( zzσ  and zxσ  for the 2-D case of a flat horizontal 
surface) are zero. Notice that within all seven categories of boundary grid-cells, the free 
surface is always parallel to the grid. Imaging, therefore, only takes place in the 
directions of the x - and z -coordinate axes. 

What happens in the vicinity of inner corners, where grid-points are subject to 
imaging from different directions? Briefly, by calculating separately the vertical and 
horizontal derivatives of the stress components in the update of the particle velocities, 
such problems are readily avoided (see below). 

Horizontal boundary grid-point (H-point): An H-point has one neighbor on either 
horizontal side that is either an H-, OL-, OR-, IL- or IR-point. The H-points are treated 
identically to the flat free-surface approximation. Particle velocities are set to zero in 
the vacuum. Imaging of stresses only takes place in the vertical direction. Just as for the 
flat free surface, the xxσ  component is updated using the fourth-order accurate central 
FD approximation along the surface. 

Vertical boundary grid-point with vacuum to the left (VL-point): A VL-point has 
one neighbor on either vertical side that is either a VL-, IL- or OL-point. The VL-points 
are treated similar to the H-points with the exception that here it is the xxσ  component 
that should be zero at the boundary, and the imaging therefore only takes place in the 
horizontal direction. The zzσ  component is updated in the same way that the xxσ  
component is updated for the H-points. 

Inner corner grid-point with vacuum above to the left (IL-point): An IL-point has 
one neighbor vertically above that is either an OL- or VL-point, and one horizontally to 
the left that is either an H- or OL-point. No imaging takes place around the IL-points. 
The xxσ  and zzσ  components are located along the boundary, perpendicular to parts of 
it, and are therefore set to zero. 

Outer corner grid-point with vacuum to the left (OL-point): An OL-point has either 
an IL- or H-point immediately to the right and an IL- or VL-point immediately below. 
The free surface is located through the xv , zv , and zxσ  components, while the normal 
stresses are located in the vacuum above the free surface (Fig. 7). The zxσ  component 
is therefore set to zero. The xxσ  and zxσ  components are imaged horizontally with 
respect to the rightmost vertical part of the free surface, and the zzσ  and again the zxσ  
components are imaged vertically with respect to the lowermost horizontal part of the 
free-surface (Fig. 7). If the OL-point is adjacent to an IL-point, the particle velocity 
component in between must be set to zero to obtain a stable and accurate solution. 

Vertical boundary grid-point with vacuum to the right (VR-point): A VR-point has 
one neighbor on either vertical side that is either a VR-, IR- or OR-point. The VR-
points are treated analogously to the VL-points, with the exception that the imaging 
takes place in the opposite horizontal direction. 

Inner corner grid-point with vacuum above to the right (IR-point): An IR-point has 
one neighbor vertically above that is either an OR- or VR-point, and one horizontally to 
the right that is either an H- or OR-point. Only vertical imaging of the zxσ  component 
takes place for the IR-points. The xxσ  and zzσ  components are located along the 
boundary, perpendicular to parts of it, and are therefore set to zero. 

Outer corner grid-point with vacuum to the right (OR-point): An OR-point has 
either an IR- or H-point immediately to the left and an IR- or VR-point immediately 
below. The free-surface makes a step immediately to the left of the OR-point and only 
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intersects with its zv  component, whereas the other velocity- and stress-fields are 
located in the vacuum above the free surface (Fig. 7). The zxσ  component immediately 
to the left of the boundary point is set to zero. The xxσ  and zxσ  components are imaged 
horizontally with respect to the vertical segment of the free-surface boundary to the left 
of the grid-point (Fig. 7). The zzσ  component is imaged vertically with respect to the 
step at the zv  component in the OR-point. If the OR-point is adjacent to an IR-point, 
the particle velocity component in between must be set to zero to obtain a stable and 
accurate solution. 

The free-surface boundary points have to be classified prior the FD. The maximum 
computational efficiency is obtained by setting the reciprocal values of the densities to 
zero everywhere in the FD grid above the free surface. The particle velocities will then 
automatically be zero above the free surface after every update. The imaging algorithm 
thus does not add a substantial amount of the computational cost. However, 
computations are wasted in the region occupied by vacuum above the topography in the 
FD grid. 

Each of the equations for the particle velocities, consist of two derivatives (one 
vertical and one horizontal) of the stress-tensor components. Here we do not show 
explicitly equations for the considered 2D case as they can be easily obtained from eqs. 
(8) for the 3D case. By first performing all vertical imaging of the stress-tensor 
components (H-, OR-, OL-, and IR-points) and then calculating and adding only the 
vertical derivatives in equations, the free-surface condition is satisfied completely in all 
grid-cells along the boundary. Next, the horizontal imaging of the stress components 
(VL-, VR-, OR-, and OL-points) is carried out followed by an update with the 
remaining horizontal derivatives in equations, again satisfying the free-surface 
boundary condition. Following the updates of equations it is necessary to set the xv  
component to zero in the VR- and OR-points, since the reciprocal velocity is not zero in 
these points. Subsequently, the stress-fields are updated. This action does not involve 
any imaging of the variable fields. Following the update, the correction of the normal 
stress parallel to the surface must be made at the H- ( xxσ ), VL- and VR-points ( zzσ ), as 
described above for the horizontal free-surface. 

There is a modeling limit as to how narrow the “troughs” or “crests” in the 
topography can be. A crest cannot be narrower than the number of grid-points imaged 
around its horizontal sides. Fig. 7 shows the narrowest crest and trough that are allowed 
when using fourth-order accurate spatial central-difference approximations. 

Since the technique requires approximately three times dense spatial sampling than 
that inside the medium, Robertsson and Holliger (1997) used a grid-refinement as 
illustrated in Fig. 8. For the update at grid points of the finer grid close to the coarser 
grid a simple linear interpolation in the vertical direction is sufficient between the 
wavefield components in the coarse and fine parts of the grid. However, in the 
horizontal direction, some care should be taken since waves that propagate close to 
parallel to the transition region will undergo reflection due to very slight numerical 
errors in the interpolation between the two regions. An excellent performance can be 
obtained by using a more accurate sinc interpolation (Martin Musil, personal 
communication). 

To illustrate the accuracy of the method for modeling surface topography we show 
an acoustic example that has been published elsewhere (Robertsson et al., 2006).  The 
example addresses the problem of modeling scattering from a rough sea surface 
modeled as a self-similar surface using the method by Pierson and Moskowitz (1964).  
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The so-called Significant Wave Height (SWH) was set to 2 meters (a moderately rough 
sea as marine reflection seismic data typically are acquired in seas up to 4m SWH). 

Figure 9 shows the reflected response due to a plane wave incident vertically from 
below as well as at 30D  incidence angle with respect to the vertical, recorded 6m below 
the average level of the sea surface.  We show solutions computed using three different 
methods.  First, the FDTD method by Robertsson (1996) described here.  Second, a 
solution computed using the spectral element method (Chaljub et al., 2006) and finally 
a solution computed using the Kirchhoff approximation (Laws and Kragh, 2002). 

Careful convergence tests were carried out to ensure that details of the reflected and 
scattered response were not contaminated by numerical artifacts in the respective 
method.  The FDTD method determined the spatial discretization of the sea surface 
used for all three methods, since it required the densest sampled sea surface (15-20 
grid-points per minimum wavelength). 

As can be seen from Figure 9, there is very good match between the FDTD and the 
spectral element solutions both in terms of amplitude and phase far into the coda.  
Although the much simpler (and more efficient Kirchhoff method) provides a 
reasonably accurate solution, the synthesized coda differs significantly from that 
computed using the two other methods. 

 
 

 
Figure 8. Grid-refinement technique (Robertsson and Holliger, 1997) used 

together with the method for modeling surface topography (Robertsson, 
1996). The upper part of the grid (light grid cells) is three times more 
densely sampled than the lower part (dark grid cells). Reproduced from 
Robertsson and Holliger (1997). 
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Figure 9. Rough sea surface reflected response for a plane wave incident vertically 

from below (top row) and at an angle of 30D  to the vertical (bottom 
row). The reflected/scattered field is recorded at a point placed at 6m 
depth. The plots on the right are enlargements of the scattered coda in 
the plots on the left. Black: FDTD response. Grey: Response computed 
using a Kirchhoff method (Laws and Kragh, 2002). Dashed: Response 
computed using a spectral element method (Chaljub et al., 2006).  Figure 
reproduced from Robertsson et al. (2006). 
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Wavefield Excitation 

 
 

Direct modeling of the point sources 
 
The average properties of complex seismic sources are usually represented as point 
sources in a continuous elastic medium (see, for example, chapter 3 of Aki and 
Richards, 1980). The two simplest point sources are body forces and moment-tensor 
sources. A point source representation of a body-force type of source can be 
implemented directly as the increment of the corresponding components as given by the 
equation of motion, e.g. eqs. (7) : 

,i i j j iv fρ σ= +� . 
 
Note, that the body force source-time function is not differentiated with respect to time. 
The usual implementation of the body-force point source at the time mt  is then 
 

( ) ( ) ( )1
i m i m i mv t v t t f t

ρ
Δ= + . 

 
Implementation of the moment-tensor source can be included either by stress (Virieux, 
1986; Coutant et al., 1995) or by particle velocity (Frankel, 1993; Yomogida and Etgen, 
1993; Graves, 1996). The implementations are equivalent due to the body-force 
equivalent theorem (e.g., pages 40-44 of Aki and Richards, 1980). In the particle- 
velocity implementation, each component of the moment tensor is implemented by 
corresponding couple of the body forces with discrete arm length between the forces. 
For example, in the staggered-grid velocity-stress formulation the xxM  component of 
the moment tensor is equivalent to couple of the forces ( / )xxM xΔ  acting along the x -
axis in the opposite directions. Because these forces are applied at one grid point, the 
appropriate volume is one grid cell, x y zΔ Δ Δ⋅ ⋅ . Therefore, the particle-velocity update 
for the xxM  component of the moment tensor at grid node ( ), ,I J K  is 
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However, the equivalent body forces for the representation of the xyM  component of the 
moment tensor are not located along the grid line I  and they must be averaged from 
four equivalent body forces ( / 2 )xyM yΔ  acting along the x-axis in the opposite 
directions with a force arm of length 2 yΔ as illustrated in Fig. 10. Therefore the particle 
velocity update for the xyM  component of the moment tensor at grid node( ), ,I J K  is 
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Analogously the remaining components of the moment tensor can be implemented as 
equivalent body forces centered at grid node( ), ,I J K . Note that this moment tensor 
implementation allows modeling of the explosive sources (equal diagonal elements and 
vanishing non-diagonal elements of the moment tensor), pure shear slip (if the moment 
tensor is determined from the dip, strike and rake and seismic moment, page 117-118 of 
Aki and Richards, 1980), or a compensated linear vector dipole (CLVD) source. 
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Figure 10. An example of equivalent body force implementation of moment tensor 
source component xyM  (top) and xxM  (bottom). The FD grid shows 
only the XY plane of the 3D grid as all body forces are implemented in 
the same plane (plane K).  
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Introducing the source wavefield along a boundary internal to the grid 
 

Alterman and Karal (1968), Kelly et al. (1976) and Levander (1989) describe how to 
introduce a source field into a FD grid by “injecting” an analytical source solution on 
an internal artificial surface surrounding the source to for instance avoid a (point) 
source singularity in the FD computation. The source wavefield is introduced so that it 
radiates from the outside of the surface surrounding the source. In principle, all we need 
is to satisfy the principle of superposition and the continuity of the superimposed 
wavefields across the surface. In practice because the FD calculation is discontinuous at 
the injection surface S , some care must be taken in the FD calculations where the 
spatial FD stencil intersects the surface. 

 
Figure 11. Introduction of a source wavefield along an internal artificial surface in 

the staggered grid illustrating the update of normal stresses. Normal 
stresses are located on the solid grid whereas shear stresses are located on 
the dashed grid. The region with grey background corresponds to iV  
whereas the remaining part of the grid (white background) corresponds to 

eV . The so-called injection surface S  separates the two regions. Two FD 
stencils are shown in the picture (one updating a point in  iV  and one a 
point in eV ). Bold lines in the grey region correspond to grid points where 
the source wavefield should be subtracted at the appropriate points during 
the update whereas bold lines in the white region show grid points where 
it should be added. Reproduced from Robertsson and Chapman (2000). 
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Fig. 11 shows a 2D staggered FD grid in the vicinity of the injection surface S . The 
region outside the surface is referred to as the external region eV  (white in Fig. 11) 
whereas the region inside the surface is referred to as the internal region iV  (grey in 
Fig. 11). The process of introducing the source wavefield is straightforward and 
involves manipulating the update of the wavefield only in the vicinity of S  for the 
update of points where the spatial extent of the FD stencil intersects S  (where the 
wavefield in the grid is discontinuous). In Fig. 11 these points have been marked with 
by the thick bold lines. 

The source field to be injected is known (e.g., analytically) in the vicinity of the 
surface S  for all times (this is possible at least if the surface is located entirely within a 
homogeneous part of the model). The source wavefield will interact with the model 
throughout the FD grid within iV  and eV  and generate a scattered wavefield. In eV  both 
the source wavefield and the scattered wavefield is present whereas in iV  only the 
scattered wavefield is present. Since the source wavefield is known (e.g., analytically) 
this can be added and subtracted as appropriate for the update of points along the bold 
lines for the parts of the spatial stencils that intersect S  (subtract the source wavefield 
at the appropriate points when updating points along the bold lines in the grey region 
and adding the source wavefield at the appropriate points when updating points along 
the bold lines in the white region). 

In each FD time step the stresses (and corresponding memory variables for the 
viscoelastic case) are first updated in the entire grid. When the update is complete, we 
go back and correct the update at the points where the spatial FD stencil intersected the 
surface S . Here we describe how this is done for the normal stresses (illustrated in Fig. 
11). Outside S  in eV , the wavefield is updated as if the injected wavefield were 
propagating through the entire grid. Therefore we must add the injected source 
wavefield to the particle-velocity components corresponding to the parts of the stencil 
that are inside S  in iV . In Fig. 11 this occurs when normal stresses along the bold lines 
in the white region along each side of eV  are updated. For a 4th-order accurate scheme 
we therefore need to know the source wavefield along the two closest grid points inside 
S  for the upper and left edges of the rectangular injection region shown in Fig. 11, and 
along the closest grid point for the lower and right edges. Inside S  in iV , the wavefield 
is updated as if no wavefield were injected. Therefore we must subtract the injected 
source wavefield from the particle-velocity components corresponding to the parts of 
the stencil that are outside S  in eV  (for update of normal stresses located along the bold 
lines in the grey region along each side in iV ). 

Next, we advance the calculation by half a FD time step and update the particle 
velocities in the entire grid using equation. The wavefield injection is performed using 
the same procedure by adding and subtracting the stress components of the injection 
wavefield at the three grid points around S . In total, we therefore need to know the 
values at all times of stresses and particle velocities at three grid points around S , 
staggered appropriately both in time and space. By iterating these two steps of the 
update, the entire FD simulation is stepped through and the wavefield is injected along 
the surface S . 
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Figure 12. Example of a hybrid simulation in a homogeneous medium, where the 

FD computation is driven by an analytical wavefield for a point source 
in a homogeneous medium. The source is located at a fictitious position 
in the upper corner of the FD grid. The injection surface is outlined as a 
dashed box. Snapshots from 0.14s, 0.24s and 0.30s are shown. 
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As noted by for instance Fäh (1992), Zahradník (1995), Robertsson et al. (1996), 
Zahradník and Moczo (1996), Moczo et al. (1997), Robertsson and Chapman (2000), 
and Takeuchi and Geller (2003), the same technique for introducing the source 
wavefield along an internal boundary can be used for hybrid modeling purposes where 
the wavefield from another computational technique (e.g., discrete-wavenumber or ray 
method) is introduced inside a FD grid. In that case we reverse the regions iV  and eV  so 
that the source wavefield is injected inside the surface S . 

Fig. 12 shows snapshots from tests of such a hybrid technique. Here the source 
wavefield is given by an analytical solution for a point source in a homogeneous 
medium. Since the FD grid also corresponds to a homogeneous medium we would 
expect the scattered wavefield in eV  to be zero. In the snapshots from 0.14s and 0.24s, 
we see no evidence of any wavefield being present in eV . However, in the snapshot 
from 0.30s, part of the wavefield leaks through into eV . This is because the wavefront 
that has propagated in the FD grid has suffered from numerical dispersion and no 
longer exactly match the wavefield from the analytical solution which ideally should 
destructively interfere with the FD wavefront as it reaches the injection surfaced S . 

In the so-called FD-injection technique (Robertsson and Chapman, 2000), the 
source wavefield is generated by a FD solution in an unperturbed model to drive the 
update on small FD sub-grids surrounding regions of change to compute the wavefield 
in a perturbed model. This can provide a powerful method in for instance waveform 
inversion applications. 
 
 

Dynamic Modeling of Earthquake Rupture 
 

Fault Boundary Condition 
 

In many seismological problems an earthquake fault may be represented by a surface 
embedded in heterogeneous elastic or viscoelastic pre-stressed medium. A non-zero 
initial equilibrium stress is due to tectonic loading and residual stress after previous 
earthquakes on the fault. An earthquake itself may be modeled as spontaneous rupture 
propagation along the fault. The rupture generates seismic waves which then propagate 
from the fault into the embedding medium. In general, several ruptures can propagate 
along the fault at one time. Inside the rupture displacement and particle-velocity vectors 
are discontinuous across the fault. At the same time traction is continuous. Let ( )in xG  be 
a unit normal vector to the fault surface pointing from the ‘-‘ to ‘+’ side of the surface 
(Fig. 13), ( ) ( ) ( ), , ,i i iDu x t u x t u x t+ + − −= −G G G  slip (discontinuity in displacement vector 

across the fault),  ( ) ( ) ( ), , ,i i iDv x t v x t v x t+ + − −= −G G G  slip rate (discontinuity in the 

particle-velocity vector across the fault), ( ) ( ) ( )0; , ; ; ,i i iT n x t T n x T n x tΔ= +
G G GG G G  total 

traction on the fault, ( )0 ; iT n x
G G  initial traction, and ( ); ,iT n x tΔ

G G  traction variation. The 
latter is due to the rupture propagation. Inside the rupture the total traction is related to 
slip at the same point through the friction law ( ), ,fT T Du Dv θ=

G G G G , where fT
G

 is 
frictional traction and θ  represents a set of state variables. Given the initial traction and 
(visco)elastic material parameters of the fault, it is the friction law which controls 
initialization, propagation and healing of the rupture. 
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Consider further only shear faulting: there is no opening of the fault and no 
interpenetrating of the fault materials. Assume a locked fault. If the magnitude of the 
shear traction is smaller than the frictional strength (product of the normal traction and 
the friction coefficient) at a point, the fault remains locked and slip rate zero at the 
point. Should the shear traction exceed the frictional strength, slip occurs. The shear 
traction decreases over a finite distance from the static down to the dynamic frictional 
level, following the friction law. The slipping is opposed by the friction. 

Let subscripts sh and n denote the shear and normal components. Let S denote 
frictional strength. The boundary conditions on the fault can be formulated as follows 
(Day, 1982, 2005; Day et al. 2005). 
 
Shear faulting: 
 0, 0, 0, 0.n n sh shDu Dv Du Dv= = ≠ ≠G G G G  (154) 
 
 
Shear traction bounded by the frictional strength: 
 
   shT S≤

G
 . (155) 

 
Colinearity of the shear traction and slip rate: 
 
 ( ) 0sh sh shS Dv T n Dv− =

GG G G . (156) 
 
The fact that the frictional traction opposes the slipping is consistent with the 
colinearity requirement because we consider vector nG  oriented in the direction from the 
‘-‘ to ‘+’ side of the fault and slip as the relative motion of the ‘+’ side with respect to 
the ‘-‘ side of the fault: both ( )T n

G G  and DvG  are viewed from the same side of the fault. 
If slip was defined as the relative motion of the ‘-‘ side with respect to the ‘+’ side of 
the fault, requirement of the antiparallelism with the ‘+’ sign in eq. (156) would be 
consistent with the frictional traction opposing the relative motion of the fault faces. 

While semi-analytical boundary integral equation (BIE) method is perhaps the most 
accurate method to account for the fault boundary conditions, especially on non-planar 
faults (e.g., Aochi and Fukuyama, 2002), its application is limited because it cannot 
include heterogeneity of the medium. Because the FDM can account for material 
heterogeneity and is computationally more efficient, it has been extensively applied to 
study source dynamics particularly on planar faults parallel to grid planes. 

The FDM has been applied to the dynamic rupture propagation independently by 
Andrews (1973, 1976), and Madariaga (1976), and then by many others. Two main 

Figure 13. Fault surface and the normal vector 
nG . 
 
 

−  
 
+  

fault  

nG  
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approaches have been developed and applied. In the split-node approach the fault is 
represented by a grid surface of split (partial) nodes. At a grid point, each of the two 
partial nodes belongs to only one side of the fault and the two nodes may experience a 
relative motion (slip) along the fault. In the zone approach the fault is represented by a 
„thick” zone and slip is evaluated either using inelastic strain or as a difference between 
displacements at grid points separated by the fault zone. Before we mention other 
approaches we explain the split-node and zone methods in some detail. 
 
 

Traction-at-Split-Nodes (TSN) Method  
 

The TSN method has been developed independently by Andrews (1973, 1976, 1999), 
Day (1977, 1982, 2005); see also Day et al. (2005). Consider a halfspace H−  covered 
by a FD grid and a grid node . .p n −  on the free surface of the halfspace. Similarly, 
consider halfspace H+  and a grid node . .p n +  on its free surface (Fig. 14). Define an 
outer normal vector nG  to the surface of the halfspace H−  pointing to the halfspace 
H+  (i.e., nG is in the ‘ . . . .p n p n− +→ ’ direction). 
 

 
 
Let M−  and M +  be masses of the two partial nodes. The partial node . .p n −  is 
accelerated by a force F−G  which is due to deformation in the halfspace H−  and, 
possibly, by body forces acting in the halfspace. Similarly, the partial node . .p n +  is 
accelerated by a force F+

G
. Thus, the accelerations are a F M± ± ±=

GG
. Couple the 

halfspaces H−  and H+  along their surfaces in order to simulate a fault. The coupling 
can be accomplished by a constraint surface traction acting at the contact. Consider a 
traction ( )cT n

G G
 quantifying a contact force with which material in H+  acts upon 

material in H− . Let A  be an area of the fault surface associated with each partial node. 
Then the acceleration a−G  of the partial node . .p n −  is contributed by the force F−G  
(which is due to deformation in the halfspace H− ) and by the constraint force 

, ( )c c cF F A T n− = = ⋅
G G G G

 (which is due to the action of the halfspace H+ ): 

( ) ( ),c ca F F M F A T M− − − − − −= + = + ⋅
G G G GG . Similarly, the acceleration a+G  of the 

partial node . .p n +  is contributed by the force F+
G

 (due to deformation in the halfspace 
H+ ) and by the constraint force , ( )c c cF F A T n+ =− =− ⋅

G G G G
 (due to the action of the 

halfspace H− ): ( ) ( ),c ca F F M F A T M+ + + + + += + = − ⋅
G G G GG . Consider some initial 

Figure 14. Halfspaces H−  and H+ , partial 
nodes . .p n +  and . .p n − , and the normal vector 
nG . 

H−  

H+  

. .p n +  

. .p n −  

nG  
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equilibrium state with traction 0 ( )T n
G G

. The traction does not contribute to the 
acceleration of the partial node . .p n − . If cT

G
 is the total traction, only the difference 

0cT T−
G G

 contributes to the acceleration. Considering the accelerations at time t , 
 
 ( ) ( ) ( ){ }0ca t F t A T t T M± ± ±⎡ ⎤= ⋅ −⎢ ⎥⎣ ⎦

G G GG
∓ . (157) 

 
Though the initial traction is nonzero, the initial strain is considered zero. Then forces 
F±
G

 correspond to deformations caused only by the dynamic changes due to rupture. 
The particle velocities and displacements of the partial nodes in the 2nd-order 
approximation are then 
 
 ( ) ( ) ( ) ( ){ }02 2 cv t dt v t dt dt F t A T t T M± ± ± ±⎡ ⎤+ = − + ⋅ −⎢ ⎥⎣ ⎦

G G GG G
∓  (158) 

and 
 ( ) ( ) ( )2u t dt u t dt v t dt± ± ±+ = + ⋅ +G G G . (159) 

 
For the slip rate we obtain from eq. (158) 
 

 

( )

( ) ( ) ( )
( ) ( ) 0

2

2 c

Dv t dt

M F t M F t
Dv t dt dt B T t T

A M M

− + + −

− +

+ =
⎧ ⎫⎪ ⎪−⎪ ⎪⎪ ⎪⎡ ⎤− + − +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⋅ +⎪ ⎪⎪ ⎪⎩ ⎭

G
�

G G
G GG ,      (160) 

 
where ( ) ( )B A M M M M− + − += + . Find a constraint traction ( ) ( )c ctT t T t=

G G
 that 

assures zero slip rate before two partial nodes start slipping as well as vanishing slip 
rate when the slipping ceases. The question is how to time condition 0Dv =G . If  
( ) 0Dv t =G  is required, the trial traction acts for the interval from 2t dt−  to 2t dt+  

and can reverse the slipping (i.e., produce back-slip) by the time it is integrated all the 
way up to 2t dt+ . This results in the traction driving slip rather than opposing it and 
thus in violating conservation of energy. Therefore, ( )2 0Dv t dt+ =G  has to be 

required. Assume ( )2 0Dv t dt+ =G  in eq. (160) and obtain the trial traction 
 

 ( ) ( ) ( ) ( )
( )

1
0 /2ct dt M M Dv t dt M F t M F t

T t T
A M M

− − + − + + −

− +

− + −
= +

⋅ +

G GGG G
� . (161) 

 
Find a constraint traction during the slip, that is, frictional traction ( ) ( )c f

sh shT t T t=
G G

  such 

that ( )2 0Dv t dt+ ≠G . Assuming first ( )2 0Dv t dt+ ≠G  for ( ) ( )c f
sh shT t T t=
G G

 in eq. 

(160), and then  ( )2 0Dv t dt+ =G  for ( ) ( )c ctT t T t=
G G

 leads to 
 
 ( ) ( ) ( )2 ct f

sh sh shDv t dt dt B T t T t⎡ ⎤+ = −⎢ ⎥⎣ ⎦
G GG

� . (162) 
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Recalling the colinearity condition (156) 
 
 ( ) ( ) ( ) ( ) 0f

sh shshS t Dv t T t Dv t− =
GG G

. (163) 
 
Using approximation ( ) ( ) ( )1

2 2 2sh sh shDv t Dv t dt Dv t dt⎡ ⎤= − + +⎣ ⎦
G G G

 and eq. (162) 
we obtain from the colinearity (163) 
 

     ( ) ( ) ( ) ( ) ( ) ( )2 .
2 2

ctf
sh shsh sh

S tdtDv t S t B T t Dv t dt dt B T t
⎡ ⎤ ⎡ ⎤⎢ ⎥+ = − +⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

G GG G
�  (164) 

 
Define an auxiliary vector γ

G
 

 ( ) ( )2 ct
sh shDv t dt dt B T tγ = − +

GG G . (165) 
 
Eqs. (164) and (165) imply that ( )f

shT t
G

 has the direction of the vector γ γϒ =
G G G

. 
Therefore, enforcing the boundary conditions on the fault can be formulated as follows: 
 

( ) ( ) ( ) ( )If then .ct c ct
shT t S t T t T t≤ =
G G G

 (166) 

( ) ( ) ( ) ( ) ( ) ( )If then , .ct c c ct
sh n nshT t S t T t S t T t T tϒ> = =

G G G G G
 (167) 

 
The above approach, based on finding a trial traction ( )ctT t

G
 ensuring 

( )2 0Dv t dt+ =G , and colinearity requirement at time t, can cause in some rare cases 
large oscillations of rake direction just around the time of rupture arrest (Day 2005).  It 
is possible to avoid this problem by the modification of the colinearity condition (Day 
2005): 
 
 ( ) ( ) ( ) ( )2 2 0f

sh shshS t Dv t dt T t Dv t dt+ − + =
GG G

� . (168) 
 
Inserting eq. (162) into eq. (168) yields 
 
 ( ) ( ) ( ) ( ) ( ) ( )ct ctf f

sh sh sh shS t T t T t T t S t T t⎡ ⎤+ − =⎢ ⎥⎣ ⎦
G G G G

� . (169) 

 
Eq. (169) means that ( )f

shT t
G

 has the same direction as ( )ctT t
G

. Then condition (167) is 
replaced by 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )If then , .ct ct ctc c ct
sh n nsh sh shT t S t T t S t T t T t T t T t> = =

G G G G G G
   (170) 

 
The modified approach behaves always well. 

An assumption of the small displacements is necessary for the TSN method. The 
assumption means that the accumulating slip does not change the configuration of the 
partial nodes adjacent to each other. This means that shh Du

G
� , where h  is a spatial 
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grid spacing. Also, a necessary condition is that the time-stepping algorithm is explicit 
and a force at a node accelerates only that node. 

Accuracy of the TSN implementation heavily depends on the accuracy of 
calculation of the body forces F±

G
 due to deformations in the halfspaces. Formally, at 

each time the surfaces of the halfspaces are the free surfaces. In fact, both Andrews 
(1973, 1976, 1999) and Day (1982) used an FD formulation on the partly-staggered 
grids in which the spatial differencing is equivalent to the finite-element method. 
 
 

Stress Glut  (SG) Method 
 

Andrews (1999) describes the SG method that he used in his 1976 paper (Andrews,  
1976). Instead of a surface with an explicit displacement discontinuity in the TSN 
method, an inelastic zone of a finite thickness is used in the SG method to represent the 
fault surface. The method can be implemented in the partly-staggered or staggered grid. 
Consider for simplicity a horizontal zone (perpendicular to the z-axis oriented positive 
downward) centered at a grid plane with grid positions of the stress tensor and bounded 
in the vertical direction by grid planes with grid positions of the displacement and 
particle-velocity vectors. The thickness of the fault zone is thus equal to one grid 
spacing h. Assume the velocity-stress formulation. At each time level stresses are 
updated as if there were no fault zone. Denote shear stress-tensor components located at 
the central horizontal grid plane as trial values (superscript t) and evaluate a magnitude 

of the shear trial traction vector ( ) ( )
1 22 2t t t

sh zx zyT τ τ⎡ ⎤= +⎢ ⎥
⎢ ⎥⎣ ⎦

G
. If, at a grid point,  t

shT S≤
G

, 

S  being the frictional strength of the fault, then { }; ,t
zi zi i x yτ τ= ∈  at that grid point. 

If t
shT S>
G

, then, due to the colinearity, ( ) { }; ,t t
zi sh ziS T i x yτ τ= ∈

G
. The latter means 

an inelastic stress adjustment. Assuming that the corresponding inelastic strain is 
distributed over the fault thickness, the offset in stress, i.e., stress glut, is related to the 
increment of the seismic moment tensor in the volume of the grid cell: 
 
 ( ) { }3 ; ,t

zi zi ziM h i x yτ τΔ = − ⋅ ∈ . (171) 

 
At the same time, the increment in the seismic moment tensor can be interpreted under 
the assumption of a shear slip along the central grid plane of the fault zone. Assuming a  
a normal vector ( )0,0,1n

G  and slip rate at a given grid position on the central grid plane 

( ) ( )i i iDv v z v z+ + − −= − , 

 { }2 ; ,zi iM Dv h t i x yμΔ Δ= ∈ . (172) 
 
Equating eqs. (171) and (172) we obtain for the slip rate 
 

 { }; ,
t
zi zi

i
hDv i x y
t
τ τ

μΔ

−
= ∈ . (173) 

 
Andrews (1999) discusses computational details as well as the more complicated 
implementation of the method on the staggered grid. 
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Thick-Fault-Zone  (TFZ) Method 
 
Madariaga et al. (1998) described a velocity-stress staggered-grid method to study 
dynamic faulting. As in the SG method, no surface with explicit displacement and 
particle-velocity discontinuity is considered. Instead, an alternative fault zone of the 
finite thickness is centered at the grid plane with grid positions of the normal stress-
tensor components. Considering again, e.g., a horizontal fault zone, frictional boundary 
conditions are applied on the two nearest grid planes with grid positions of the shear 
stress-tensor components, i.e., on the grid planes half grid spacing below and above the 
central grid plane. Because the horizontal displacement components are located on the 
central grid plane, the slip rate is evaluated as the difference between particle-velocity 
values at grid planes one grid spacing above and one grid spacing below the central grid 
plane, that is, over a thickness of two grid spacings. Such a configuration preserves 
symmetry of stresses and particle velocities about the fault plane. Madariaga et al. 
(1998) apply standard 4th-order FD formulae to calculate spatial derivatives at all grid 
positions. 
 
 

Comparison of the TSN, SG and TFZ Methods 
 

Dalguer and Day (2004, 2006) performed an extensive numerical comparison of the 
three methods. Calculations were performed with the 2nd-order TSN and 4th-order 
staggered-grid SG and TFZ formulations using the same grid spacing h  and uniform 
grid. The rupture propagation velocity in the fault-zone model is lower than that in the 
split model – likely due to the blunting of the stress concentration on the rupture front 
in the fault-zone models. The TSN solution converges substantially better than the SG 
solution, and far better than the TFZ solution. The SG method reaches convergence 
with a grid spacing 2h , while grid spacing smaller than 4h  is necessary for the TFZ 
method. Dalguer and Day therefore tested modified grid configurations for the SG and 
TFZ methods. With the fault thickness reduced to 0.75h  in the SG and  0.5h  in the 
TFZ modeling, the rupture velocities approach that in the TSN modeling. At the same 
time, the behaviors of both fault zones depend on the ratio between h  and the fault 
thickness which has to be adjusted ad hoc. In any case, the theoretical efficiency of the 
4th-order fault-zone formulations is lost if sufficiently accurate results are to be 
obtained. 
 

Alternative Approaches 
 

An interesting approach was presented by Ionescu and Campillo (1999) who studied the 
2D problem of slip instability under slip-dependent friction. They used a combination 
of two space-time FD grids. An interior (or body) grid is used to solve the equation of 
motion away from the fault. The other grid is used to implement frictional boundary 
conditions on the fault. The first-order hyperbolic system (velocity-stress formulation) 
is reduced on the fault to a first-order system in one space variable (orthogonal to the 
fault) for the shear velocity and shear stress-tensor components. Using the integration 
on the characteristic lines and frictional boundary conditions a nonlinear unstable 
ordinary differential equation for slip is obtained. The equation depends on the 
computed values of the stresses and particle velocities away from the fault. A small 
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local time step is used to solve the equation during the larger time step applied in the 
body grid. 

Nielsen modified a standard application of the 4th-order staggered-grid FD scheme 
to investigate rupture propagation (e.g., Nielsen et al. 2000, Nielsen and Carlsson 
2000). In order to satisfy the frictional boundary conditions with a slip rate and 
tractions evaluated at the same time, he approximates a field variable at a given time 
using a 2nd-order interpolation between their values at consecutive time levels. Thus he 
reformulates the velocity-stress formulation of the equation of motion and Hooke’s law 
with the same time-derivative operator applied to the particle-velocity and stress-tensor 
components. In addition to this, Nielsen avoids application of the spatial-derivative 
operator across the fault if the operator should apply to a discontinuous field. He 
achieves this by reducing the spatial-derivative operator down to the 2nd-order in 
evaluating shear stress-tensor components at a grid point on the grid planes one grid 
spacing above and one grid spacing below the fault, if the grid point one grid spacing 
away is slipping. 
 
 

Modeling of Non-planar Faults Using Partly-staggered Grids 
 

Cruz-Atienza and Virieux (2004) developed a new FD approach to model the dynamic 
rupture propagation on non-planar faults. They used a 2D velocity-stress formulation on 
a partly staggered grid. Their formulation is based on a new application of the fault 
boundary conditions. No split nodes are considered, that is, there is no explicit 
discontinuity at any grid point. A finite source, rupturing fault, is represented by a set of 
neighboring numerical cells placed alongside a fault without sharing any stress grid 
point. Because this is the first FD approach enabling both medium heterogeneity and 
non-planar fault geometry, we describe its essential features in some detail. 

Consider a Cartesian coordinate system and a corresponding spatial rectangular 
grid. A square h h×  FD grid cell has particle-velocity vector positions at four corners 
and stress-tensor position at the center. Then one n-point square numerical cell is a set 
of n n×  neighboring square FD cells. This means that one n-point square numerical 
cell has n stress-tensor grid positions (points). Considering a fixed spatial support S 
(square area), the scaling relation for a numerical cell is 2

nS n h= ⋅  , where n is the 
number of FD square n nh h×  grid cells making one n-point numerical cell. The greater 
n the smoother the fault-geometry discretization is. 

Boundary conditions on the fault are applied locally in each numerical cell. The 
application means the following. A planar fault tangential to the discretized fault 
geometry is considered inside the cell. Let ϑ  be an angle between the x-axis and the 
fault plane. The Cartesian stress-tensor components at a stress grid point are rotated into 
shear and normal stresses with respect to the fault plane.  The same boundary condition, 
following a considered friction law, is applied at each stress grid point within the 
numerical cell. After imposing the boundary condition, the stresses are rotated back to 
the original coordinate system connected with the grid. 

The fault plane always passes through the center of the numerical cell. Velocity grid 
points in a numerical cell belong to either positive or negative fault block. At a velocity 
grid point I, displacement Iu  parallel to the fault plane is obtained from the projected 
particle velocity by simple time integration. Because no split nodes are considered, 
displacement Iu  depends on a distance between the point and the fault. For any time t, 
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Iu  will be at its maximum, if the point lies on a line passing through the center of the 
cell and perpendicular to the fault. It will be zero, if the grid point lies on the fault. For 
a given ϑ , it may happen that no velocity grid point lies on a line passing through the 
center of the cell and perpendicular to the fault. A weight function ( )IH ϑ  for a grid 
point I is defined as a ratio between the maximum displacement and displacement, that 
is, ( ) ( ){ } ( )max , ,I I IH u t u tϑϑ ϑ ϑ= . ( )IH ϑ  does not depend on time and has to be 
determined for all grid points in a given type of a numerical cell. Then the weighted 
displacements ( ) ( ) ( ),I I Iu t u t Hϑ ϑ= ⋅�  do not depend on the fault orientation in the 

spatial grid. The relative displacement of the, for example, positive fault block, D+ is 

then determined as ( )
1 2

2

1

p

I
I

D u t p+

=

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
∑ �  , where p is the number of the velocity grid 

points. Points within an angular vicinity γ  around the fault (two opposed sectors of a 
circle centered at the cell’s center) are not considered because their displacements are 
too small. The angle is determined as ( )arctan 1nγ = − . 

Cruz-Atienza and Virieux (2004) found that the zigzag discrete shape of the fault 
associated with a low number n of grid points leads to unwanted destructive dynamic 
interaction of cells. At the same time, as the grid spacing is smaller, the dynamic 
interaction is stronger. As a consequence, in order to increase numerical resolution, it is 
necessary both to reduce grid spacing and enlarge n. To guarantee the low-frequency 
equivalence between different discretizations of a fault length L, the scaling relationship  

30 nL h n≥  has to be followed. 



 79

Nonreflecting Boundaries 
 

Absorbing Boundary Conditions 
 
For computational reasons it is almost always necessary to limit the computational 
domain to the part of the Earth in the vicinity of the seismic source and receivers as 
well as the Earth structure contributing to form the seismic response. This is achieved 
by applying so-called non-reflecting boundaries or absorbing boundary conditions 
(ABC) around the tractable truncated computational domain such that no energy is 
transmitted or reflected from the boundary of the computational domain back into its 
interior. Thus from the perspective of an observer located inside the computational 
domain the signals appear to have been perfectly absorbed by the boundary. 

A significant proportion of the literature on time-domain FD modeling is devoted to 
the design of efficient ABC but most published approaches can be divided into two 
groups. The first group, including the popular Clayton-Engquist (1977), Higdon (1991), 
Lindman (1975) and Liao et al. (1984), attempt to extrapolate the wavefield beyond the 
edge of the computational domain and then use this extrapolated value in the spatial 
discretization operator used to update locations inside the computational domain. An 
interesting approach was suggested by Peng and Toksöz (1994, 1995). 

Collino (1993) and later other authors attempted to apply so-called high-order 
ABCs  which, in general, is an infinite sequence of ABCs with increasing accuracy.  An 
advantage of the high-order ABCs is that they are implementable for an arbitrary high 
order (Givoli, 2004). 

The second group, including the approach of Kosloff and Kosloff (1986) and 
Perfectly Match Layers (PML; Bérenger, 1994), gradually attenuate the amplitude of 
the wavefield within a "sponge" layer within the boundary. 

For completeness, we should also mention work on complementary boundary 
conditions and operators (Smith, 1974; Schneider and Ramahi, 1998), which does not 
fit within either of the two groups. Dirichlet and Neumann boundary conditions are 
complementary as they have opposite reflection coefficients. By adding the response 
from two simulations with different complementary boundary conditions, the first-order 
boundary reflections will destructively interfere. Unfortunately, higher-order 
interactions will not necessarily cancel and the methods have therefore not found 
widespread application. 

Each ABC approach has it own characteristics, advantages and disadvantages. In 
the first group mentioned above, for example, the Clayton-Engquist and Higdon 
methods have the advantage of requiring relatively little memory but only work well 
within a limited range of angles of incidence. Lindman's approach works well over a 
wide range of angles but only works when the material along the boundary is 
homogeneous. Liao's ABC works well over most angles and for some types of 
heterogeneity adjacent to the boundary but requires double precision implementation to 
maintain stability. It also requires more computer memory than the other methods listed 
above. 

In the second group of ABCs, Kosloff's method (Kosloff and Kosloff, 1986) 
amounts to applying an exponential damping function of the wavefield within a 
“sponge” region surrounding the computational domain. Kosloff's method is effective 
at normal incidence and is very easy to implement but requires a relatively large 
amount of memory and can generate significant reflection artifacts away from normal 
incidence. A related method known as perfectly matched layers (PML) was first 
introduced for electromagnetic wave propagation by Bérenger (1994), and later 
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generalized for elastic wave propagation by Chew and Liu (1996), Collino and Tsogka 
(1998, 2001), Komatitsch and Tromp (2003), Marcinkovich and Olsen (2003), Festa 
and Nielsen (2003), and for viscoelastic anisotropic media by Chen et al. (2000). 
PML’s have now become established as the most efficient absorbing boundary 
condition available, offering simplicity of implementation, stability, good absorption 
over a wide range of incident angles and frequencies and less memory requirements 
than Kosloff 's ABC. In this section we will therefore focus on PML’s, review the 
theory and discuss issues related to their implementation. 
 
 

The Perfectly Matched Layer (PML) 
 
Following Chen et al. (2000), we define the split particle velocities ( )

iv γ  such that the 
equation of motion in a general heterogeneous anisotropic elastic medium is 
decomposed into three equations 
 
 ( ) ,i iv γ

γ γρ σ=�  (174) 
 

with 

 
3

( )

1
i iv v γ

γ=
= ∑  (175) 

 
where the Einstein summation convention is not assumed for the Greek letter γ . 
Similarly, the constitutive equation for the split stiffness tensors may be written as 
 
 ( ) ,i j i j q qc vγ

γ γσ =�  (176) 
with 

 
3

( )

1
i j i j

γ

γ
σ σ

=
= ∑ . (177) 

 
Following Chew and Liu (1996), we introduce a modified spatial differencing 

operator 
 

 1
eγ γ
γ

∂ = ∂�  , (178) 

 
where the denominator eγ  has been interpreted as a coordinate stretching variable. 

Outside the PML layers, vector ( )1,1,1e =G . Inside the PML layers, a complex eγ  is 

needed in order to attenuate the split ( )( ) ( ),v γ γσ  in the γ  direction. Assuming a time 

dependence of i te ω−  we choose 
 

 
i

e a γ
γ γ ω

Ω
= +  (179) 
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where aγ  and γΩ  are the so-called PML medium profiles. In the time domain, this 
leads to the following equations for the partial variables: 
 
 ( ) ( )

t i ia v γ
γ γ γ γρ σΩ∂ + = ∂  (180) 

and 
 ( ) ( )

t i j i j q qa c vγ
γ γ γ γσΩ∂ + = ∂  . (181) 

 
The selection of the PML material profile aγ  and γΩ  is key to the effective 
implementation of the PML ABC. Theoretically, these parameters can be arbitrary in 
the continuum space and the PML layers would perfectly absorb any incident wave. 
This is, however, not true in the discretized model. The discretization error is 
proportional to the product of the spatial discretization size and the contrast of these 
parameters (Chew and Weedon, 1994; Chew and Liu, 1996). A PML sponge of width 

10N =  with the following profile at each layer 1, 2,...,i N=  has been found to result in 
excellent absorption for many seismic applications for a wide range of frequencies, 
Courant numbers and wave types (Chen et al., 2000): 
 

 ( )
2.8

max
1 / 2 11 1 sin
2

N ia i a
Nγ π

⎛ ⎞⎛ ⎞− + ⎟⎜ ⎟⎜= + + ⎟⎟⎜ ⎜ ⎟⎟⎟⎜⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
 (182) 

and 

 ( )
2.8

max
1 / 2 11 sin
2

N ii
Nγ πΩ Ω

⎛ ⎞⎛ ⎞− + ⎟⎜ ⎟⎜= + ⎟⎟⎜ ⎜ ⎟⎟⎟⎜⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
 (183) 

 
with max 0.075a =  and max 0.91 tΩ Δ= . 

We note that the PML ABC differs fundamentally from the traditional material 
sponge ABCs such as the method by Kosloff and Kosloff (1986) as a result of the split 
wavefield formulation. For each set of split wavefields, only the propagation vector 
component normal to the boundary is complex. The propagation vector components 
parallel to the boundary remain the same across the boundary layers. As a result, a 
perfect match can be obtained while the wavefields are attenuated by the perfectly 
matched layers, at least in theory in the non-discretized model. 

Finally, the extension of PML’s to viscoelastic media is straightforward (Chen et 
al., 2000). The memory variables governing the viscoleastic behavior of the medium 
due to propagating waves are updated from the change in stress and record the history 
of the stress. The memory variables in the PML region are therefore split in exactly the 
same way as the stresses. The equation for updating the split stress fields becomes, see 
eq. (111),  
 

 ( ) ( )( )

1

n
i j

t i j i j q q l
l

a c v r γγ
γ γ γ γσΩ

=
∂ + = ∂ + ∑�  (184) 

 
and the equation for updating the split memory variable fields is, see eq. (113), 
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 ( ) ( )( ) ( )1 1 1 , 1,...,i j i j l
i j q ql l R

l l l
r t r t c v l nγ γ ε

γ γ
σ σ σ

τ
τ τ τ

⎛ ⎞⎟⎜ ⎡ ⎤⎟+ = − ∂ =⎜ ⎟ ⎢ ⎥⎜ ⎣ ⎦⎟⎜ ⎟⎝ ⎠
��  , (185) 

 
where i j q R

c γ
⎡ ⎤⎢ ⎥⎣ ⎦  means relaxed moduli. The equations for updating the particle velocities 

in split form remain the same, eq. (180). 
 
 

PML Reflection Coefficients 
 
In Fig. 15 we show reflection and conversion coefficients for incident P- and S-waves.  
The curves were obtained from 2D simulations in a homogeneous isotropic elastic 
medium with a P-velocity of 2500 m/s, an S-velocity of 1500 m/s and a density of 1100 
kg/m3 where a point source was positioned close to the PML boundary (Chen et al., 
2000). For incident P-waves the source was explosive, for S-waves the source was a 
force oriented normal to the PML boundary. In each case the source was a 50 Hz 
Ricker wavelet. The reflections were corrected for propagation distance and radiation 
pattern to obtain reflection and conversion coefficients. 

Simulations were carried out for PML boundary thicknesses of 10, 20, 30, 40 and 
50 cells, and compared to a 40 cell thick Kosloff ABC (shown in the dashed lines). 
First, the results show that the choice of a 10 grid-point wide PML boundary is roughly 
as efficient as the 40 grid-point wide boundary (justifying the values we used for cost 
comparisons in the previous section). However, the poor performance at low grazing 
angles may not be acceptable for many applications. Increasing the thickness of the 
PML boundaries drastically improves the effectiveness so that we are close to single-
precision machine accuracy for the 50 grid-point wide boundaries. The PS-plot (top 
right of Fig. 15) reveals very little P-to-S conversion. Machine precision is achieved 
with a 20 cell thick PML. 

The SS-reflection coefficient (bottom left in Fig. 15) shows a behavior similar to the 
PP-results. The SP-plot (bottom right in Fig. 15) does not show the same remarkable 
performance as the PS-converted wave reflection although the performance is still 
satisfactory. It is possible that the SS-and SP-results could be degraded by P-wave 
energy generated by the source used. 

Fig. 16 shows the corresponding results for an anisotropic model with the same 
density and vertical velocities as the isotropic model but with a vertical to horizontal P-
velocity ratio of 1.12 and an anellipticity of 0.16 as defined by Carrio et al. (1992). The 
results do not differ significantly from the ones shown in Fig. 15 for the isotropic case. 
 
 

PML Implementation Issues and Computational Cost 
 
In general eq. (180) is a system of nine equations: three partial, or split, velocities for 
each velocity component. The split elastic constitutive relation (181) is in general a 
system of eighteen equations: three partial stresses for each of six independent elements 
in the stress tensor. For the viscoelastic case, eq. (181) translates into eqs. (184) and 
(185) which, in general, are systems of eighteen equations. If all of these variables were 
required on the complete 3D FD grid, the resulting memory requirements would make 
this approach unattractive. However, because updating split field variables require only 
derivative of the full velocities and stresses, the domain in which the split field 
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variables are defined (and stored) is restricted to a relatively narrow region around the 
boundaries. 

The PML formulation presented here requires almost the same number of 
calculations per grid point as the interior of the computational domain since most of the 
calculation required for updating each split field is nothing but a constituent of the 
conventional time-domain FD calculation which must be evaluated in any case (e.g., 
the spatial derivatives). However, because of the splitting of variables, there is a 
significant price to pay in storage per grid point (approximately a factor three 
depending on dimension, model properties, and other factors). Nevertheless, with a 10 
grid-points wide PML sponge the PML conditions are still computationally 
significantly more efficient both in terms of CPU and memory compared to other ABC 
(Chen et al., 2000). 

Recently Wang and Tang (2003) proposed an alternative PML implementation 
which avoids splitting the wavefields. The storage requirements per grid point are 
therefore equivalent to those in the interior of the grid. However, the CPU requirements 
increase to solve for a new set of differential equations with similar characteristics to 
the viscoelastic equations presented above. 

We note that it is straightforward to interface PML boundary conditions with a free-
surface condition. 

As we have seen, despite what the name might suggest, PML’s are still far from 
perfect. Because of inaccuracy related to discrete numerical implementations of PML’s, 
a finite sponge width is required to avoid artificial reflections. The cost in terms of 
memory is therefore not insignificant, particularly for hybrid-modeling scenarios or 
grids that are narrow in one direction (e.g., cross-line), when the size of the absorbing 
boundary regions actually may be comparable to the size of the computational domain 
of interest. Moreover, if energy is incident under very low grazing angles, the PML’s 
will cause significant reflections. The search for a truly perfect absorbing boundary 
condition is therefore likely to continue as demands for absorbing boundary conditions 
that are effective in small (deformed) time-domain FD grids and extreme low angles of 
incidence is increasing with the interest in 3D applications and hybrid modeling 
scenarios on the rise. One could then imagine solving the wave equation in 3D on grids 
that were only one or a few grid-points wide in the cross-line direction, at a cost that 
would be comparable to that of a 2D simulation. This would enable synthesizing 
seismic data with true 3D amplitudes such that multiples, surface waves, guided waves 
and body waves all had the correct relative phases and amplitudes. 
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Figure 15: Amplitude reflection coefficient as a function of incidence angle for 

PML boundaries of width 10, 20, 30, 40 and 50 grid-points (solid) as 
well as for a 40 grid-points wide Kosloff sponge (dashed). Isotropic 
model. Top left: Normalized PP reflection. Top right: Normalized PS 
reflection. Bottom left: Normalized SS reflection. Bottom right: 
Normalized SP reflection. Reproduced from Chen et al. (2000). 
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Figure 16: Same as Figure 15 but for an anisotropic model. Reproduced from Chen 

et al. (2000). 



 86

Memory Optimization and Parallelization 
 
 

Memory Optimization 
 

Memory Requirements in the Staggered-grid Schemes 
 
Many examples of FD modeling of earthquake motion in large sedimentary basins or 
seismic wave propagation in complex models in seismic exploration require very large 
computer memory and CPU. In order to solve the most challenging problems of 
seismology, it is necessary to reduce both memory and CPU requirements. Thus, 
memory optimization, sophisticated programming and parallelization are practically 
necessary. Here we briefly review several possibilities to reduce memory requirements 
and the number of operations. We also briefly mention parallelization. 

Consider staggered-grid FD schemes. Assume that the material parameters of the 
medium can vary between any two grid positions. Such heterogeneity can be referred to 
as the point-to-point heterogeneity. Though it is sometimes an improper simplification, 
a homogeneous medium inside a grid cell is assumed by some modellers. Such material 
parameterization can be referred to as homogeneous material cells. 

Denote the displacement and particle-velocity components at time level m  as mU , 
mV , mW , and mU� , mV� , mW� , respectively. In the case of the point-to-point 

heterogeneity, each grid position of the displacement or particle-velocity components is 
assigned its value of density, that is, there are Uρ , Vρ  and Wρ  assigned to a grid cell. 
Similarly, the elastic (unrelaxed) moduli xyμ , yzμ  and zxμ  are assigned to grid 
positions of the shear stress-tensor components, while κ  and μ  are assigned to the 
joint grid position of the normal stress-tensor components. Corresponding to the elastic 
moduli, the anelastic coefficients lYκ , lY μ , xy

lY μ , yz
lY μ  and zx

lY μ ; 1,...,l n= , are 
assigned to the grid positions of the stress-tensor components. 

An assumption of homogeneous material cells reduces the material parameters in a 
grid cell to , , , lY κρ κ μ  and lY μ ; 1,...,l n= . Consider displacement-stress (DS), 
displacement-velocity-stress (DVS) and velocity-stress (VS) staggered-grid FD 
schemes (for the equations and simplified schemes see, e.g., Moczo et al., 2001) which 
are 2nd-order accurate in time. The three schemes require the following variables to be 
stored in primary memory for a grid cell: 
 
 DS:   1 1 1, , , , ,m m m m m mU V W U V W− − −  (186) 
 DVS:   1 2 1 2 1 2, , , , ,m m m m m mU V W U V W− − −� � �  (187) 
 VS:   1 2 1 2 1 2 1 1 1 1 1 1, , , , , , , ,m m m m m m m m m

xx yy zz xy yz zxU V W T T T T T T− − − − − − − − −� � �  (188) 
 
As discussed in the section on incorporation of the realistic attenuation, the coarse 
spatial sampling of the anelastic functions (memory variables) can be considered. In the 
spatial distribution used by Kristek and Moczo (2003), 4n=  and each grid cell 
accommodates all six anelastic functions for just one of the relaxation frequencies, that 
is , , , ,xx yy zz xy yz

l ll l lξ ξ ξ ξ ξ and zx
lξ  ; { }1, 2,3, 4l ∈ . 
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Consider a computational region with dimensions XL, YL and ZL. Let minβ  and 

maxα  be the minimum S-wave and maximum P-wave velocity, respectively. Let a cf  be 
the frequency up to which the FD computation should be sufficiently accurate. The 
maximum spatial grid spacing is the ( )min ach f sβ= ⋅ . Here, s is the spatial sampling 
ratio mins h λ=  which has to be chosen based on the grid dispersion in the considered 
FD scheme and the wave propagation distance. The time step is 

( )min ;0 1t q p h pαΔ = ⋅ ⋅ < ≤ , where p is the stability ratio and q depends on the FD 
scheme. For example, for the 2nd-order in time, 4th-order in space staggered-grid, 

( )6 7 3q= ; see, e.g. Moczo et al. (2000). 

Assuming a uniform grid with the grid spacing h in the three Cartesian directions, 
the numbers of the grid cells in the three directions are 

( ) ( ) ( )1, 1, 1MX XL h MY YL h MZ ZL h= + = + = + . 
In summary, the number of material parameters and field variables in the staggered-

grid FD schemes are: 
 
 DS, DVS:   ( ) ( )3 5 5 4 6 6 40MX MY MZ MX MY MZ⎡ ⎤⋅ ⋅ ⋅ + + ⋅ + + = ⋅ ⋅ ⋅⎣ ⎦  (189) 
and 
 VS:             ( ) ( )3 5 5 4 9 6 43MX MY MZ MX MY MZ⎡ ⎤⋅ ⋅ ⋅ + + ⋅ + + = ⋅ ⋅ ⋅⎣ ⎦  (190) 
 
Here, ( )3 5 5 4+ + ⋅  stands for 3 densities, 5 unrelaxed moduli and 5 4⋅  anelastic 

coefficients, while ( )6 6+  for 6 displacement/particle-velocity components and 6 

anelastic functions in one grid cell. In the VS scheme, ( )9 6+  stand 3 for particle-
velocity components, 6 stress-tensor components and 6 anelastic functions. If the 
anelastic coefficients are spatially distributed in the same manner as the anelastic 
functions, 5 4⋅  is replaced by 5 in formulae (189) and (190). In the case of the 
homogeneous grid cells, 3 5 5 4+ + ⋅  is replaced by 1 2 2 4+ + ⋅ . 

Clearly, depending on the total number of the grid cells, MX MY MZ⋅ ⋅ , the 
memory requirements can be very large. 

The total number of the grid cells and thus the memory requirements can be reduced 
by using a higher-order approximation in space (for example, Dablain 1986), grid with 
varying size of the grid spacing or discontinuous grid. The 4th-order staggered-grid 
schemes were introduced by Bayliss et al. (1986) and Levander (1988). In recent FD 
modeling, the 4th-order accuracy in space is almost necessary. Yomogida and Etgen 
(1993) and Rodrigues (1993) used the 8th-order displacement-stress schemes. The 
rectangular grid with a varying size of the grid spacings was first used by Boore (1970) 
in the 1D problem. Mikumo and Miyatake (1987) applied the varying size of the grid 
spacing in the 3D case in a homogeneous medium. Moczo (1989) applied the grid with 
the varying size of the grid spacing to the 2D SH problem in the laterally heterogeneous 
medium, Pitarka (1999) presented the 3D velocity-stress scheme. Jastram and Behle 
(1992), Jastram and Tessmer  (1994), Falk et al. (1996), Moczo et al. (1996), Kristek et 
al. (1999), Aoi and Fujiwara (1999), Hayashi et al. (2001), and Wang et al. (2001) 
introduced discontinuous grids. 

Given some spatial grid, the core memory can be reduced using core memory 
optimization. While simple variants were used before, Graves (1996) described an 
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optimized procedure. Moczo et al. (1999) presented a combined memory optimization 
which naturally combines core and disk memory optimizations. One other possibility to 
reduce the core memory is the use of the material cell types (e.g., Moczo et al., 2001). 
Here we briefly characterize the corresponding reductions. 
 
 

Material Cell Types 
 

In most models it is possible to efficiently describe heterogeneity of the medium by a 
spatial distribution of integer numbers (a look-up table). In this fashion each grid cell is 
assigned an integer number which represents a type of a material grid cell, that is, a set 
of material parameters characterizing the medium inside the grid cell. Such a 
description is efficient if there are sub-volumes of the computational model that can be 
covered by many grid cells of the same material type. Let K be the total number of 
different material types necessary to characterize heterogeneity of the whole model. 
Then the number of the material parameters and variables needed by the schemes is 
reduced to 
 
 DS, DVS:  ( ) ( )6 6 1 3 5 5 4MX MY MZ K⋅ ⋅ ⋅ + + + + + ⋅ ⋅  (191) 
and 
 VS:           ( ) ( )9 6 1 3 5 5 4MX MY MZ K⋅ ⋅ ⋅ + + + + + ⋅ ⋅  (192) 
 
assuming that K MX MY MZ< ⋅ ⋅  which is the case even in relatively complex models. 
The number one added to the numbers of the field variables represents the distribution 
of the integers corresponding to the material cell types. In the case of the coarsely 
distributed anelastic coefficients or homogeneous material grid cells, the same 
reductions as in formulae (189) and (190) apply. 
 
 

Core Memory Optimization 
 

In core memory optimization method (Graves, 1996) such that only limited number of 
grid planes are kept in core memory all possible time updates for these planes are 
carried out. The subset of planes, say, NP planes, repeatedly moves throughout the 
whole model space, and the displacement or particle-velocity components, stress-tensor 
components and anelastic functions are successively (plane by plane) and periodically 
overwritten in disk. The key aspect in that all possible time updates are performed for 
the planes in the core memory means that the procedure is split into three parts – roll-in, 
cascade, and roll-out. Consider, for example, that the subset is made of horizontal grid 
planes. Then in the formulae (191) and (192) MZ is replaced by NP. The smaller the 
NP, the larger the reduction is. 
 
 

Combined Memory Optimization 
 
It is obvious that whereas the requirement for core memory can be significantly 
reduced, the needed amount of disk space can become very large. Although available 
disk space becomes larger and access to disk memory becomes faster, still, in principle 
it is possible to reduce also the disk memory needed in the core-memory-optimization 
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procedure. In the disk memory optimization (Moczo et al., 1999), the wavelet transform 
is applied first to 2D array of each displacement or particle-velocity component and 
each anelastic function. The transform decreases the information entropy. Then the sets 
of the wavelet coefficients are compressed by a standard compression procedure. Thus, 
for example, instead of the  MX MY⋅  displacement-component values in one grid plane 
only a relatively short stream of zeros and ones has to be written in disk. The total 
number of the material parameters and field variables stored in disk is then 
 
 DS, DVS:  ( ) ( )6 6 1 3 5 5 4MX MY MZ CR K⎡ ⎤⋅ ⋅ ⋅ + + + + + ⋅ ⋅⎣ ⎦  (193) 
and  
 
 VS:           ( ) ( )9 6 1 3 5 5 4MX MY MZ CR K⎡ ⎤⋅ ⋅ ⋅ + + + + + ⋅ ⋅⎣ ⎦  (194) 
 
where CR is the compression ratio. A reasonable value is about 10. Moczo et al. (1999) 
found that the increase of the CPU time due to one passage of the subset of planes with 
compression was always smaller than 0.75% of the time for one passage without 
compression. This is because the increase due to compression itself is partly 
compensated by the smaller number of the I/O operations. 
 
 

Spatial Discontinuous Grid 
 

In many models the S and P wave velocities are lower near the Earth’s surface. In such 
a case it is advantageous to cover the lower part with a coarser spatial grid. Due to the 
structure of the staggered grid, the most natural combined (discontinuous) grid is the 
one whose upper part is the h h h× ×  grid and the lower part the 3 3 3h h h× ×  grid (Aoi 
and Fujiwara, 1999; Kristek et al., 1999, Robertsson and Holliger, 1997). Let MZH be 
the number of the grid cells in the z-direction in the upper grid. Let MZ3H be the 
number of the grid cells in the z-direction in the lower grid. Assuming only the material 
cell types, the number of material parameters and variables needed by the schemes is 
 
DS, DVS:   

 
( )

1 11 1 3
3 3

6 6 1 3 5 5 4

MX MYMX MY MZH MZ H

K

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎢ ⎥⋅ ⋅ + + ⋅ + ⋅⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⋅ + + + + + ⋅ ⋅⎣ ⎦

 (195) 

 
and 
 
VS:   

 
( )

1 11 1 3
3 3

9 6 1 3 5 5 4

MX MYMX MY MZH MZ H

K

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎢ ⎥⋅ ⋅ + + ⋅ + ⋅⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⋅ + + + + + ⋅ ⋅⎣ ⎦

 (196) 

 
Formulae (195) and (196) are easy to modify if the core or combined memory 
optimization are applied. 
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A combination of the material cell types, combined memory optimization and 
discontinuous grid typically can reduce the memory requirements by more than one 
order of magnitude. An example is given by Moczo et al. (2001) for the modeling of the 
1995 Kobe, Japan earthquake. 
 
 

Spatially Varying Time Step 
 
Falk et al. (1998) and Tessmer (2000) introduced a combined grid in which a smaller 
time step is applied to the upper part of the grid while a larger time step is applied to the 
lower part. Their techniques considerably reduce CPU cost. 
 
 

Discontinuous Space-Time Grids 
 

Kang and Baag (2004a, b) developed efficient techniques for 2D and 3D 4th-order 
staggered-grid modeling. They combined discontinuous grid in space with a 
discontinuous time step. While time integration in a finer grid with grid spacing h is 
performed with time step tΔ , time integration in a coarser grid with grid spacing 3h is 
performed with time step 3 tΔ . The finer grid covers 2D or 3D rectangular subregion 
which may have a planar free surface. This enables efficient modeling of localized 
surface sedimentary structures. Proportionality of the time step to the grid spacing is 
due to the fact that the two spatial grids have to overlap in the medium with a higher 
speed. The technique considerably reduces both the number of grid points and the 
number of operations. 
 
 

Parallelization 
 
Because the FD operators are local, the FD algorithms are suitable for parallelization. 
Over the past decade, several distinct approaches have been applied to parallelize FD 
codes. 
 

Message Passing Libraries 
 

Message-passing libraries, such as the Message Passing Interface (MPI, Gropp et al. 
1994), represent an approach suitable for shared or distributed memory architectures. 
The MPI typically requires the involvement of the sender-receiver communication: the 
source process makes a call to send data and the destination process makes a call to 
receive it. While the scaling of the MPI parallelized codes can be very good, the 
preparation of the code can require considerable time and effort. The resulting MPI 
parallelized code often differs substantially from the original source code. 
 
 

Parallelizing Compilers 
 

Some compilers are capable of producing a parallel code that is portable to shared and 
distributed memory machines. The compiler analyzes the inside-code dependences and 
can produce a parallelized code with or without additional user’s directives and/or 
language extensions. The High-performance Fortran language (HPF, Koelbel et al., 
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1994) is one of the best known examples. In some cases the resulting parallel code is 
quite efficient (e.g., Caserta et al., 2002) but deficiencies of the approach are also 
known. In an automatic parallelization regime, compilers often make conservative 
assumptions on data dependence, which usually yields lower efficiency. 
 

 
Interactive Parallelization Tools 

 
There are parallelization tools which provide a user with the possibility of combining 
the automatic parallelization analysis with user’s knowledge of the code. Whereas such 
interactive tools usually lead to quick parallelization, the efficiency can be limited due 
to non-optimized nesting, multiple decompositions and Fortran 90 constructs. Often 
additional manual modifications of the source code are necessary to obtain good 
performance. 

 
 

High-level Library-based Tools 
 

Library-based tools exist which are designed to help the user with the application of the 
lower-level libraries, such as MPI. Particularly, a user does not need to handle all 
details of the MPI parallelization. Some tools enable the use of additional optimizations 
specific for the machine architecture. The preparation of the parallel code may still be 
very time consuming and invasive. 

 
 

Directive-based Parallelization 
 

Some computer manufacturers, for example Cray and SGI, introduced the possibility to 
manually supplement parallelization directives in the source code. In the beginning, the 
directives were mainly used to support loop-level shared memory parallelization. 
Recently SGI’s OpenMP has become the best known and standard tool for relatively 
efficient and quick parallelization. One problem is that the OpenMP is most efficient 
only with shared-memory architectures. 
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